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1 Predicados

A Lógica proposicional não é suficientemente poderosa para englobar todas as afirmações
necessárias em matemática. Nós também precisamos lidar com expressões do tipo

x > 0, x+ y = 20, x ≥ y.

que não são proposições. De fato, a análise da primeira mostra que ela não assume valor V,
pois “x > 0 ” falha quando x = 0 e também não pode ser F, pois “x > 0 ” vale quando
x = 1 . Sentenças análogas ocorrem também na nossa ĺıngua: “Ela vive em Maringá” pode
ser reformulada como

x vive em Maringá.

onde x é variável e “vive em Maringá ” é um predicado.

Dicionários apresentam as seguintes definções do vocábulo predicado: “atributo ou pro-
priedade caracteŕıstica de alguma coisa”, “termo da oração no qual se enuncia um fato ou se
diz alguma coisa do sujeito”, por exemplo:

(1) “ estuda lógica ”
(2) “ é maior do que zero. ”

Note que tais predicados não assumem valores-verdade. Para torná-los propoções, é necessário
especificar o sujeito, por exemplo:

(1) “ Alexandre estuda lógica. ”
(2) “ Dois é maior que zero.”

Vamos nos fixar no segundo exemplo. Com a variação do sujeito na oração, digamos:

“ Dois é maior que zero.”
“ Cinco negativo é maior que zero.”

obtemos distintas proposições (cada sujeito forma uma proposição).

A fim de estudarmos esta classe de proposições, podemos denotar o predicado “é maior
que zero”, “> 0” por P , e associá-lo a um sujeito genérico x:

P (x) : “x > 0′′ ou ainda P (x) := “x > 0′′

Desta forma, as duas últimas proposições ficam: P (2) e P (−5). Note que P (x) não assume
valor V ou F quando o sujeito x não está especificado.

Cabe um comentário. Com a variação do sujeito x, novas proposições P (x) são geradas.
Formalmente, denote por C uma classe de proposições. Dado o universo U , um predicado P
pode ser visto como uma função abaixo

P : U → C
x→ P (x)
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2 Quantificadores

Repare agora nas sentenças

Alguém vive em Maringá.

Todos os números são maiores que zero

As palavras grifadas indicam, de uma forma ou de outra, a ideia de quantidade.

O interesse do cálcudo de predicados consiste em “quantificar” os predicados, obtendo-
se e estudando-se classes de proposições. Ao invés de isolarmos proposições P (1), P (2),...
estaremos interessado no estudo simultâneo de toda a classe de proposições P (x) obtidas
através de um dado predicado P . Para tanto, a estratégia será quantificar os predicados e
as formas mais comuns envolvem dois quantificadores: universal (para todos) e existencial
(existe algum) denotados por ∀ e ∃, respectivamente. Daqui em diante, P (x) denota um
predicado arbitrário com variável x.

2.1 Operador Universal: ∀

Seja P (x) um predicado com variável x. A proposição:

“Para todo sujeito x, a afirmação P (x) é verdadeira”,

denotada simbolicamente por
∀xP (x)

está associada ao predicado cuja variável x foi quantificada universalmente.

O operador ∀xP (x) é verdadeiro quando absolutamante todas as proposições P (x) são
válidas na medida que variamos x.

Retornemos ao nosso predicado P (x) : “x > 0 ”. Se dissermos: “para todo natural po-
sitivo x, x > 0 ” é agora sim uma proposição verdadeira, pois P (1), P (2), P (3), ... são todas
verdadeiras. No entanto, se dissermos, “para todo x número inteiro, x > 0 ” é uma pro-
posição falsa, pois, digamos, P(-1) falha. Repare que basta encontrar apenas um P (x0) falso,
onde x0 é convenientemente escolhido, para que ∀xP (x) receba valor F.

Assim, é necessário também especificar em qual universo do discurso U , universo a qual
x pode assumir valores, para que a operação fique bem definida. No primeiro e segundo caso
acima, U coincide com o conjunto dos naturais positivos e inteiros, respectivamente.

Dizer que ∀xP (x) é falso no universo U significa que existe algum x0 ∈ U onde P (x0)
falha.
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2.2 O operador existencial: ∃

A frase “para algum x, P (x)” simplifica:

“Existe pelo menos um sujeito x para o qual a afirmação P (x) é verdadeira.”

foi quantificada existencialmente e será denotada simbolicamente por

∃xP (x).

Note que ∃xP (x) busca, dentro do universo U se há algum sujeito tal que torne a sentença
(relativa ao sujeito) verdadeira. Se tal elemento for encontrado, ∃xP (x) recebe valor V, caso
contrário, será F.

2.3 Uso de quantificadores

Exemplo 2.1. Seja U o conjunto dos números naturais positivos e P (x) o predicado “x2 = x”.
Então ∀xP (x) é falso porque P (3) é falso. Por outro lado, ∃xP (x) é verdadeiro porque pelo
menos uma das proposições P (x) se verifica, embora exista apenas uma proposição válida,
quando x = 1.

Exemplo 2.2. Se o universo é o conjunto dos números inteiros, então:

∃x[x = 3] é V ∃x[x+ 2 = 2] é V ∃x[x < x+ 1] é V
∀x[x = 3] é F ∀x[x+ 2 = 2] é F ∀x[x < x+ 1] é V

Exemplo 2.3. Para os números naturais positivos como universo de discurso, seja Q(x) o
predicado “x2 + x+ 41 é primo”.

Claramente ∃xQ(x) é V, pois Q(1) vale. Inspeções para x = 1, 2, 3, . . . mostram que
Q(1), Q(2), Q(3), . . . são válidos, levando-nos a tentação de considerar ∀xQ(x) também ver-
dadeiro. (Convém alertar aqui que este procedimento pouco cuidadoso pode gerar erros).
Embora Q(1), Q(2), . . . , Q(39) sejam todos verdadeiros, Q(40) é falso. Por outro lado, se o
universo fosse U ={1, 2, . . . , 30}, ambas ∃xP (x) e ∀xQ(x) seriam válidas.

Assim como utilizamos os conectivos lógicos em proposições, podemos operá-los também
em predicados, formando sentenças mais complexas. Aproveitando os exemplos acima, ∼
Q(n) representa o predicado “n2 + n + 41 não é primo”. Aplicando os conectivos lógicos já
conhecidos, podemos criar as proposições: ∀x(Q(x) → P (x)), ∃x(P (x) ∧ Q(x)) etc. Tente
determinar os respectivos valores verdade.

Exemplo 2.4. Aproveitando os predicados acima P (x) := “x2 = x′′ e Q(x) := “x2 + x+ 41
é primo” e o universo U = N∗, vamos calcular as proposições:

∃x[ P (x)→ Q(x) ] ∀x[ P (x)→ Q(x) ]

Um estratégia de solução é simplificar a expressão por meio de predicado auxiliar. Neste caso,
definimos o predicado R(x) := P (x) → Q(x). Basta estudar ∃xR(x) e ∀xR(x). Como P (1)
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e Q(1) são V, a tabela verdade do condicional garante que R(1) é V e, como consequência,
∃xR(x) é V. Consideremos um natural x ≥ 2 fixo. Logo P (x) e Q(x) comportam-se como
proposições. Neste caso, já vimos que P (x) é F. Independente do valor de Q(x), o condicional
P (x)→ Q(x) será V. O racioćınio é válido para todo x ≥ 2. Logo ∀xR(x) é também V.

Observação 2.5. (*) Quando o universo do discurso é finito, digamos U ={1, 2, . . . , n}, as
proposições ∀xP (x) e ∃xP (x) podem ser simuladas via procedimentos computacionais. De
fato, vamos determinar o valor verdade de ∃xP (x), onde P é um predicado fixado. Precisamos
assumir que cada P (i), 1 ≤ i ≤ n, é decid́ıvel computacionalmente, em outras palavras, existe
uma função computacional booleana f que determina o valor verdade f(P (i)) para cada
proposição P (i), ou seja, f(P (i)) = “true” se P (i) é verdadeira, e “false” caso contrário.

O procedimento abaixo está em “pseudo-Pascal”. Dados iniciais: U ={1, 2, ..., n} e o
predicado P . Sáıda: o valor de ∃xP (x).

P : vetor de comprimento n: {P [1], P [2], ..., P [n]}
b: variável boolena, i: contador
Begin: b:=false, i:=0

While ((b=false) and (i < n ) do

{
i := i+ 1
b:=f(P [i])

Write( b); End

Note que o valor verdade de ∃xP (x) concide com a variável boolena b.

3 Predicado com mais de uma variável.

A utilização de predicados na lógica engloba situações bem mais abrangentes, por exemplo, o
predicado “vive em Maringá” pode ser generalizado a P (x, y) : “x vive na cidade y”, fazendo
com que tal sentença dependa agora de duas variáveis: x(sujeito) e y(cidade em questão).

Analogamente, podemos considerar predicados que dependam de uma ou mais variáveis
e utilizar quantificadores para cada uma delas.

Definição 3.1. Como P (x) se tranforma em proposição na medida que atribúımos valores
espećıficos para x, dizemos então que x é variável livre, pois o valor verdade fica dependendo
de x. No entanto, o valor verdade de ∀xP (x) não depende de x, e assim dizemos que x é
variável ligada.

Exemplo 3.2. Calculemos as proposições

∃x∃y (x = 2y) ∀x∃y (x = 2y) (3.1)

onde o universo de ambas as variáveis x e y é o conjunto dos números inteiros. Resolução: o
predicado x = 2y apresenta ambas as variáveis livres. Como a expressão interna ∃y (x = 2y)
apresenta x como variável livre e y como variável ligada, passa a ser um predicado que
depende apenas de x. Defina então o predicado P (x) := ∃y (x = 2y), que só depende de
x. Agora as proposições em (3.1) correspondem a

∃xP (x) ∀xP (x). (3.2)
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Novamente recorremos ao uso de predicado auxiliar. Qual a vantagem? O predicado com
duas variáveis é reduzido a uma variável em (3.2), e neste ambiente sabemos trabalhar.

Afirmamos que P (6) := ∃y (6 = 2y) é V. De fato, o predicado 6 = 2y só depende agora de
y. Como y = 3 satifaz tal predicado, P (6) é V. Olhamos agora para a variável x. O sujeito
x = 6 torna o predicado P (x) válido, e assim ∃xP (x) é V. Com ajuda do predicado auxiliar,
trabalhamos primeiro com uma variável, e depois com a outra.

Para que ∀xP (x) seja F, basta exibir um inteiro onde o predicado P (x) falha. Pois bem,
afirmamos que P (7) é F. Como justificar? Sabemos que a única solução de equação 7 = 2y é
7/2, que não é um número inteiro. Em outra palavras, nenhum inteiro satisfaz tal equação.

Exemplo 3.3. Considere os números naturais positivos como universo de discurso U para
ambas variáveis e P (x, y) o predicado ”x < y ”. Note que ele assume agora o papel de uma
função: P: U × U → C: (x, y) → P (x, y). Ambas as variáveis x e y estão livres, no sentido
que o valor verdade de P (x, y) depende de ambas as variáveis x e y. Na sentença ∃xP (x, y),
x é variável ligada, mas y é livre, de modo que ela ainda não assume valor verdade. O
predicado ∃xP (x, y), “ existe um x tal que x < y ”, se transforma em proposição na medida
que atribúımos valores espećıficos para y, por exemplo: ∃xP (x, 1) é F, ∃xP (x, 2) é V (pois
x = 1 satisfaz a sentença), e assim por diante. Agora valor-verdade de ∃xP (x, y) não depende
de x (x está ligada) mas depende de y, ou seja, apresenta y como variável livre e pode ser
pensada como um novo predicado que apenas depende de y. Desta forma, podemos quantificar
tal variável, tranformando finalmente numa proposição. Se quantificamos com o operador
universal, a proposição ∀y∃xP (x, y) é F, pois ∃xP (x, 1) é F. Por outro lado, com o operador
existencial, ∃y∃xP (x, y) é V (desde que ∃xP (x, 2) é V, basta tomar y = 2).

Há oito modos de quantificar um predicado P (x, y) com duas variáveis:

∀x∀y, ∀x∃y, ∀y∀x, ∀y∃x
∃x∀y, ∃x∃y, ∃y∀x, ∃y∃x

Uma questão natural é saber se os quantificadores podem ser comutados, ou seja, se a
ordem deles importa no enunciado. Para responder esta pergunta, vejamos o exemplo abaixo.

Exemplo 3.4. Este exemplo ilustra a importância da ordem dos quantificadores. Considere
P (x, y) o predicado : “ y é mãe de x”. Para a variável x, seja o universo do discurso a
população mundial que está viva; e inclua as pessoas falecidas no universo da variável y.
Apresentamos alguns modos de quantificá-la seguido com a respectiva interpretação e valor-
verdade:

(1) ∀x∃yP (x, y) “ qualquer pessoa tem uma mãe ” (V)
(2) ∃y∀xP (x, y) “ alguma pessoa é mãe de todo mundo ”(F)
(3) ∀y∃xP (x, y) “ todo mundo é uma mãe. ”(F)
(4) ∃x∀yP (x, y) “ uma pessoa é filho de todo mundo ” (F)

Note que as frase (1) e (2) apresentam enunciados e até valores distintos, embora a única
diferença das fórmulas seja a ordem dos quantificadores. Analogamente, vale para as frases
(3) e (4); refletindo a importância da ordem dos quantificadores.
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Exemplo 3.5. Considere o universo de x e y os naturais positivos e o predicado P (x, y) :
“y > 2x.”

(a) Para determinar a proposição ∀x(∃yP (x, y)), inicialmente consideramos o predicado in-
terno ∃yP (x, y), onde y está ligada e x livre. Assim, tal expressão pode ser vista como
um predicado na variável x e então, atribuindo valores para x, obtemos: ∃yP (1, y) é V
(pois para y = 3, torna P (1, 3) válida), ∃yP (2, y) é V (pois 5 > 4) e assim por diante.
O caso geral ∀x∃yP (x, y) : “ para todo número x, existe um número y maior que 2x”
é V (basta tomar y = 2x + 1).

(b) Se invertermos o ordem dos quantificadores, ∃y∀x(P (x, y), lido “ existe um número y
maior que todas as potências na base 2” é F. De fato, o predicado interno ∀xP (x, y),
que significa “ para todo x, y > 2x”, é sempre F para todo y, basta tomar x = y e dáı
obtemos y > 2x que é F.

Exemplo 3.6. Muito conceitos matemáticas são definidos através de predicados. Vejamos
alguns exemplos.

Universo das variáves conceito (predicado) definição do conceito

números inteiros x é par ∃y x = 2.y
números inteiros x é número quadrado ∃y x = y2

números inteiros a divide b ∃y b = y.a
números reais x é inverśıvel ∃y x.y = 1
matrizes reais 2× 2 x é inverśıvel ∃y x.y = I I=matriz identidade

O primeiro predicado foi explorado no Exemplo 3.2. Naquele exemplo, a traduçao de ∃xP (x)
corresponde à frase “Existe um inteiro par”, enquanto que ∀xP (x) significa “Todo número
inteiro é par”.

Exemplo 3.7. Mais ainda, muitas propriedades matemáticas podem ser expressa em termos
de predicados. Vejamos formulações lógicas de algumas propriedades dos números reais:

∀x∀y∀z [x.(y + z) = xy + xz] o produto é distributivo

∃y∀x [x+ y = x] existe elemento neutro para a soma

∀x∃y [x+ y = 0] todo número real tem oposto

∀x [x 6= 0→ (∃y x.y = 1)] todo real diferente de zero possui inverso

Exemplo 3.8. (*) O uso da predicados aparece praticamente em todos os conceitos da
matemática. Ilustremos um exemplo na geometria anaĺıtica. Dados dois vetores u e v em
R3, dizemos que o conjunto {u, v} é linearmente dependente se um deles é um múltiplo
escalar do outro. A tradução lógica fica da seguinte forma. Denote o predicado de duas
variáveis (vetores) “{u, v} é linearmente dependente” por P (u, v). O universo da variável α
é o conjunto dos números reais. Desta forma

P (u, v) := ∃α (u = α.v) ∨ (v = α.u),

onde . denota o produto escalar.
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4 Cálculo de predicados

No cálculo proposicional, podemos criar proposições novas combinando conecticos lógicos
sobre proposições mais simples. Tautologias nos permitem criar regras de equivalência entre
proposições, as quais são usadas na simplificação de expressões lógicas. Há também regras
de inferências.

Utilizaremos os recursos já vistos em lógica proposicional para estudarmos a lógica de
predicados.

Nos próximos comentários, denotamos por P e Q duas proposições quaisquer e P (x) e
Q(x) dois predicados quaisquer, ambos com variável livre x.

1. Assim como fizemos com as proposições, podemos criar naturalmente novos predicados
via conectivos lógicos, a saber:

∼ P (x) P (x) ∧Q(x) P (x) ∨Q(x)
P (x)→ Q(x) P (x)↔ Q(x)

2. Algumas identidades lógicas: (≡) para predicados também podem ser “importadas ”
do cálculo proposicional. Citamos:

Proposicões Predicados

P ≡∼∼ P P (x) ≡∼∼ P (x)
P → Q ≡∼ P ∨Q P (x)→ Q(x) ≡∼ P (x) ∨Q(x)

3. Lembramos que os predicados quantificados em todas as variáveis (por exemplo: ∀xP (x),
∃x∀yR(x, y) ) são transformados em proposições e podem ser estudadas como tais.

Há também tautologias próprias nos predicados. Citamos alguns casos particulares. Dizer
que “Todas as bolas são brancas ” tem o mesmo significado de “Não há bola de outra
cor ”. Em notação lógica, ∀xP (x) ≡∼ ∃x ∼ P (x), onde P (x) denota o predicado “ser
bola branca ”. Analogamente, dizer que “Nem todas as bolas são brancas ” tem o mesmo
significado de “Há uma bola de outra cor”, ou simbolicamente: ∼ ∀xP (x) ≡ ∃x ∼ P (x). A
substituição do predicado não invalida a equivalência lógica. Acabamos de ilustrar relações
entre os quantificadores. Devido à sua importância, estudaremos tautologias desta natureza
isoladamente.

Teorema 4.1. As tautologias são válidas:

1) ∼ ∀xP (x) ≡ ∃x (∼ P (x))
2) ∼ ∃xP (x) ≡ ∀x (∼ P (x))
3) ∀xP (x) ≡∼ ∃x (∼ P (x))
4) ∃xP (x) ≡∼ ∀x (∼ P (x))
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Demonstração: Vamos considerar a primeira delas. Devemos lembrar que
∼ ∀xP (x) ≡ ∃x (∼ P (x)) se e somente se ∼ ∀xP (x) ↔ ∃x (∼ P (x)) é tautologia. Assim,
basta verificar que as proposições ∼ ∀xP (x) e ∃x (∼ P (x)) assumem sempre o mesmo valor-
verdade. De fato, se ∼ ∀xP (x) é V, então ∀xP (x) é F, ou seja, existe pelo menos um x tal
que P (x) é falso, ou equivalentemente, existe pelo menos um x tal que ∼ P (x) é V, e esta
última frase pode ser interpretada por ∃x ∼ P (x). As outras podem ser obtidas a partir da
primeira ou via argumentos como acima. ut

Seja P um predicado com universo de discurso formado pelos elementos 1 e 2. Aplicando
a tautologia (1) acima, temos:

∼ (P (1) ∧ P (2)) ≡∼ ∀xP (x) ≡ ∃x (∼ P (x)) ≡∼ P (1)∨ ∼ P (2)

Note que assim obtemos novamente a lei de De Morgan (ver regras na apostila de lógica
proposicional). Por esta razão, as regras acima são chamadas Leis De Morgan generalizadas.

A regra (3) acima afirma que podemos obter o quantificado ∃ partindo do quantificador
∀ e da negação ∼ . Enquanto a regra (4) afirma resultado análogo para o quantificador ∀ .
Desta forma, basta um quantificador (e os conectivos lógicos) para gerar todas as fórmulas
na lógica de predicados.

As regras (1) e (2) são utilizadas para o cálculo da negação de um quantificador. Vejamos
alguns exemplos:

Exemplo 4.2. Digamos que um estudante, quando está aprendendo equações literais, acre-
dite na validade da seguinte lei:

∀x
[
(x+ 1)2 = x2 + 1

]
Nós podemos alertar ao estudante que a lei é falsa mostrando que sua negação é verdadeira,
ou seja, que ∃x

[
(x+ 1)2 6= x2 + 1

]
se cumpre, basta tomar ou x = 1, ou x = 2.

Exemplo 4.3. Vamos calcular a negação de ∀x∀y
(
x < y → x2 < y2

)
. Aplicando o Teorema

4.1,

∼
[
∀x∀y

(
x < y → x2 < y2

)]
≡ ∃x ∼

[
∀y
(
x < y → x2 < y2

)]
≡ ∃x∃y ∼

(
x < y → x2 < y2

)
.

As identidades lógicas DC e DM afirmam que ∼ (P → Q) ≡∼ (∼ P ∨Q) ≡ P∧ ∼ Q,
portanto vale a identidade ∼

(
x < y → x2 < y2

)
≡ (x < y) ∧ (x2 ≥ y2). Finalmente, a

negação fica
∃x∃y

(
(x < y) ∧ (x2 ≥ y2)

)
.

Exemplo 4.4. (*) Retornemos ao Exemplo 3.8. Recorde que o conjunto {u, v} é linearmente
independente (LI) quando o conjunto {u, v} não é linearmente dependente, ou seja, ∼
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P (u, v). Vamos expressar a condeção LI por meio do Teorema 4.1? O conjunto {u, v} é
linearmente independente (LI) equivale a:

∼ [∃α (u = α.v) ∨ (v = α.u)] ≡ (Teorema 4.1)
∀α ∼ [(u = α.v) ∨ (v = α.u)] ≡ (regra DM )
∀α [(∼ u = α.v)∧ ∼ (v = α.u)] ≡
∀α [(u 6= α.v) ∧ (v 6= α.u)] .

A última expressão nos diz que o conjunto {u, v} é LI quando um não pode ser escrito como
múltiplo escalar do outro, conforme aprendemos na Gemetria Anaĺıtica.

Exemplo 4.5. (*) Vejamos uma ilustração das propriedades acima no âmbito do cálculo.
O limite limx→a f(x) = L pode ser reformulado no âmbito da lógica de predicados conforme
descrição abaixo:

∀ε∃δ∀x (0 < |x− a| < δ → |f(x)− L| < ε) .

Algumas vezes precisamos verificar que limx→a f(x) 6= L. Tentar determinar a negação do
limite diretamente pode causar confusão, pois tal fórmula envolve três quantificadores. O uso
do Teorema 4.1 pode ser muito útil, como por exemplo neste caso. Assim, limx→a f(x) 6= L
é equivalente a:

∼ [∀ε∃δ∀x (0 < |x− a| < δ → |f(x)− L| < ε)] ≡
∃ε ∼ [∃δ∀x (0 < |x− a| < δ → |f(x)− L| < ε)] ≡
∃ε∀δ ∼ [∀x (0 < |x− a| < δ → |f(x)− L| < ε)] ≡
∃ε∀δ∃x ∼ [(0 < |x− a| < δ → |f(x)− L| < ε)] ≡
∃ε∀δ∃x ∼ [∼ (0 < |x− a| < δ) ∨ (|f(x)− L| < ε)] ≡
∃ε∀δ∃x [(0 < |x− a| < δ)∧ ∼ (|f(x)− L| < ε)] ≡
∃ε∀δ∃x [(0 < |x− a| < δ) ∧ |f(x)− L| ≥ ε]

Ao trabalharmos com conceitos matemáticos (provar resultados, negar etc...), estamos
utilizando (expĺıcita ou implicitamente) passos que são justificados por regras lógicas. Um
relativo embasamento em Lógica é essencial para evitar passos incorretos.

Observação 4.6. (*) O célebre problema de Fermat, resolvido em 1995, depois de mais
de 300 anos de incessantes pesquisas (durante este tempo, tal probema era a mais famosa
conjectura em aberto em toda a matemática), consistia “simplesmente ” em decidir o valor-
verdade da proposição abaixo:

∃n≥3∃x∃y∃z (xn + yn = zn)

onde o universo do discurso compreende os números naturais positivos. A resposta para este
problema é negativa.

Se tentássemos procurar uma solução do sistema via busca computacional, e se fosse
encontrada, a proposição seria verdadeira. Como a resposta é falsa, significa que o programa
jamais chegaria ao final.
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Outros exemplos de tautologias no cálculo de predicados são:

Teorema 4.7. Mais Tautologias:

5) ∀x∀yP (x, y) ≡ ∀y∀xP (x, y)
6) ∃x∃yP (x, y) ≡ ∃y∃xP (x, y)
7) ∃x∀yP (x, y) ⇒ ∀y∃xP (x, y)
8) ∀xP (x) ⇒ ∃xP (x)

Outra forma de quantificação é “existe um e apenas um” elemento do universo do discurso
que torna o predicado verdadeiro. Este quantificador é representado por ∃!. Tente expressá-lo
em função dos outros conectivos e quantificadores.

5 Inferências

Análogo ao cálculo proposicional, podemos também realizar argumentos na lógica de pre-
dicados. No entanto, regras adicionais de inferência, que estão fora do nosso objetivo, são
necessárias para provar afirmações envolvendo predicados e quantificadores.

Já vimos regras de inferência (proposicionais) com intuito de concluir resultados verda-
deiros através de argumentos leǵıtimos. Veremos alguns casos simples de regras de inferência
em predicados:

5.1 Exemplificação universal: EU

Vamos supor o enunciado verdadeiro: “Todos somos mortais”(premissa). Considerando o
predicados M(x):“x é mortal ”, com x no universo dos humanos, o enunciado fica: ∀xM(x).
Como assumimos verdadeira tal proposição, na medida que atribúımos sujeitos espećıficos,
inferimos legitimamante as sentenças:

M(Sócrates) : “ Sócrates é mortal. ”
M(Kafka) : “ Kafka é mortal. ”

que são verdadeiras, e assim por diante. Portanto, parece plaúıvel assumir como leǵıtimo o
argumento (regra): o que vale para todos deve valer para um sujeito particular. No enunciado
acima, se vale ∀xM(x), então vale para M(c) (conclusão), onde c é um sujeito particular.

A regra de exemplificação universal pode ser resumida na forma:

∀xP (x)

P (c).

onde P é um predicado qualquer e c é um sujeito escolhido do discurso. Note que esta regra
elimina o quantificador universal.
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5.2 Generalização universal: GU

A segunda regra de inferência, denominada generalização universal, permite a quantificação
de uma afirmação. Se mostramos que P (c) vale para todo c do universo de discurso, então
podemos concluir que ∀xP (x). O esquema abaixo representa tal argumento (regra):

P (x)

∀xP (x)

Note que esta regra inclui o quantificador ∀.

5.3 Exemplificação existencial: EE

Tal regra formaliza o argumento: se P(x) vale para algum x, então P(c) vale para algum sujeito
c convenientemente escolhido. A terceira regra de inferência chamada de exemplificação
existencial é simbolizada por :.

∃xP (x)

P (c)

5.4 Generalização existencial: GE

Esta última diz: se P(c) vale para algum sujeito, então deve valer ∃xP (x) . A generelização
existencial pode ser representada por

P (c)

∃xP (x)

Obs: Nestas regras, ou há inclusão ou eliminação de quantificadores.

5.5 Uso das regras

A dedução no cálculo de predicados é feita usualmente pela aplicação dos passos seguintes:

1. eliminando quantificadores (regras 1 e 3).

2. “raciocinando” como no cálculo proposicional (isto é, aplicando as conhecidas regras
de inferência do cálculo proposicional - modus ponens, silogismos, etc).

3. Introduzindo quantificadores (regras 2 e 4).

Vejamos exemplos:
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Exemplo 5.1. Consideremos a situação:

“ Toda criança têm direito à educação”
“ Zequinha é uma criança ”
“ Logo, Zequinha tem direito à educação ”

Se C(x) denota: ”x é criança”, D(x): “ x tem direito à educação” e z representa Zequinha,
temos:

1. ∀x[C(x)→ D(x)] premissa
2. C(z) premissa
3. C(z)→ D(z) 1. exemplif. universal: EU

4. D(z) 2,3 e modus ponens

O argumento é leǵıtimo.

Exemplo 5.2. “Sócrates é mortal. Logo, alguém é mortal ”: Se M(x) denota “ x é mortal
” e s denota Sócrates, temos:

1. M(s) premissa

2 ∃xM(x) GE

Exemplo 5.3. “Todos os ladrões são espertos, Artur não é esperto. Portanto, ele não é
ladrão”. Predicados: L ser ladrão, E ser esperto, a denota Arthur.

1 ∀x [L(x)→ E(x)] premissa
2 ∼ E(a) premissa
3 L(a)→ E(a) 1. EU

4 ∼ L(a) 2,3 Modus Tollens

6 Métodos de provas na matemática

Uma teoria matemática (teoria dos números, teoria dos conjuntos, geometria plana, etc)
inicia-se com um linguaguem própria (intŕınsica à teoria). Partindo de um conjunto de con-
ceitos, definições, axiomas, postulados, pŕıncipios (sendo os três últimos, afirmações aceitas
como verdades absolutas - sem demonstração), a teoria é constrúıda passo a passo através
de inferências lógicas: as premissas envolvem os conceitos e axiomas já assumidos e a con-
clusão é uma nova asserção derivada das anteriores. Todo o aparato lógico (regras lógicas,
equivalências, implicações,...) é um recurso empregado para verificar que tal conclusão é
leǵıtima. Após obtida tal conclusão, ela pssa a fazer parte dos recursos para provar sentenças
mais complexas.

Como há uma certa hierarquia quanto a importância de uma conclusão, estas recebem
denominaçãoes distintas. Um teorema é uma afirmação devidamente demonstrada com grau
máximo de importância. Um lema é um resultado auxiliar, frequentemente utilizado para
provar um teorema. Um corolário é um resultado que decorre imediatamente de um teorema.
Cabe ressaltar uma diferença, uma proposição na matemática é uma sentença demonstrada,
com grau de importância menor do que a de um teorema.
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Para fixar ideia, nos restringimos à teoria dos números. Os conceitos fundamentais são
os próprios números: . . . ,−1, 0, 1, 2, . . . e as operações: adição e multiplicação. Tomemos
como axiomas todas as propriedades já conhecidas dos números: comutatividade da soma, da
multiplicação, distributiva, etc. Conceitos como número par, primo não são conceitos iniciais
da teoria: eles são definidos via predicados através de conceitos prévios. Resultados usando
tais conceitos são provados, gerando teoremas, lemas, etc. Vamos ilustrar como aplicar os
métodos de prova na teoria dos números.

Proposição 6.1. “O quadrado de um número par é par.”

Demonstração: Denotamos por α a sentença acima. Em muitas situações o quantificador
fica subentendido assim como o universo (conjunto dos números inteiros). A interpretação
seria α=“Todo quadrado de um número par é par.” A reformulação lógica precisa

α = ∀x[P (x)→ P (x2), ] (6.1)

onde P (x) denota o predicado “x é par” (definido nos Exemplos 3.2, 3.6) ajuda a entender o
que precisamos fazer.

Para provarmos que α é válido, utilizamos a demonstração direta. Iniciamos retirando o
quantificador através da regra EU, assim como fizemos na seção anterior. Em outra palavras,
x não é pensado como uma variável, mas como um inteiro fixado.

Caso 1 : Se for escolhido um x ı́mpar, então P (x) é F e automaticamente P (x)→ P (x2) é
V, pela definição do condicional.

Caso 2 : Se for escolhido um x par, (P (x) é V), precisamos provar que P (x2) é V para
que P (x) → P (x2) também seja V. Pois bem, pela definição de número par, existe
um inteiro q tal que x = 2q. Assim x2 = (2q).(2q) = 2(2q2), pelas propriedades já
conhecidas da multiplicação. Tomando o inteiro k = 2(q2), reparamos que x2 = 2k, ou
seja, x2 é um número par, P (x2) também é V.

Independente de x ser par ou ı́mpar, P (x)→ P (x2) sempre é V. Finalmente, repare que
no argumento acima, não foi imposta restrição sobre x, ou seja, o argumento é válido para
todo x. Aplicando a regra GU, a proposição α fica demonstrada. ut

Observação 6.2. Salientamos que muitos livros omitem: a representação lógica 6.1, as regras
envolvendo quantificadoes (EU, GU), e omitem também o racioćınio por vacuidade apresen-
tado no Caso 1; resumindo a prova ao argumento essencial descrito no Caso 2. Optamos por
uma prova detalhada para realçar as noções lógicas.

Vamos ver a rećıproca de α.

Proposição 6.3. “Se o quadrado de um número é par, então o próprio número é par.
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Demonstração: Denotamos por β a sentença acima. O quantificador novamente fica su-
bentendido assim como o universo (conjunto dos números inteiros). A tradução lógica de β
fica

β = ∀x[P (x2)→ P (x)],

onde P (x) denota o predicado “x é par.”

Seria natural tentarmos o método direto. Aqui cabe um comentário: na prova anterior,
da variável x para x2, basta usar a multiplicação, uma operação bem definida em Z. No
entanto, da vaŕıavel x2 para x, devemos extrair a raiz quadrada. No entanto, nem sempre
podemos aplicar tal operação no ambiente Z! Assim não poderemos provar tal afirmação
pelo método direto.

Recorremos à regra de equivalência de predicados CP. Dáı o nome do método: prova por
contrapositiva. Pela regra, basta provarmos a validade de

∀x[∼ P (x)→∼ P (x2).]

Em outra palavras, provaremos que para todo x, se x é ı́mpar então x2 é ı́mpar.

O processo é muito parecido com o anterior. Iniciamos retirando o quantificador através
da regra EU.

Caso 1 : Se for escolhido um x par, então ∼ P (x) é F e automaticamente ∼ P (x)→∼ P (x2)
é V, pela definição do condicional.

Caso 2 : Se for escolhido um x ı́mpar, (∼ P (x) é V), precisamos provar que ∼ P (x2) também
é V.

Pela definição de número ı́mpar, existe um inteiro q tal que x = 2q + 1. Donde x2 =
(2q + 1).(2q + 1) = 2(2q2 + 2q) + 1, pelas propriedades já conhecidas da multiplicação.
Tomando k = 2(q2 + 2q), reparamos que x2 = 2k + 1, com k um número inteiro. Em
outra palavras, x2 é um número ı́mpar, ∼ P (x2) também é V.

Aplicando a regra GU, a proposição β fica demonstrada. ut

Proposição 6.4. “A soma de dois pares é sempre par.”

Demonstração: Denotamos por γ a sentença acima. Esta sentença é um pouco mais com-
plicada: o predicado associado “se x é par e y também é par, então a soma x+ y é par”deve
ser quantificado em ambas as variáveis com o quantificador ∀. A formulação lógica fica:

γ = ∀x∀y[(P (x) ∧ P (y))→ P (x+ y).]

A prova segue o método direto. Iniciamos retirando os quantificadores. Fixamos x e y.

Caso 1 : Se for escolhido um x ı́mpar ou um y ı́mpar, então P (x) ∧ P (y) é F, e automati-
camente a fórmula é V.
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Caso 2 : Se for escolhido um x par e um y par, (P (x) é V e P (y) é V), precisamos provar
que P (x+ y)) também é V.

Neste caso, existem inteiros q e r tais que x = 2q e y = 2r. Assim x + y = 2q + 2r =
2(q + r). Repare que x+ y é um número par, ou seja, P (x+ y)) também é V.

Independente da paridade de x e y, a fórmula (P (x) ∧ P (y)) → P (x + y) sempre é V. Apli-
cando a regra GU, a proposição γ está demonstrada. ut

Definição 6.5. Um número x é racional se existem inteiros p e q 6= 0 tais que x = p/q. Um
número irracional é um número que não é racional.

Usando racioćınios similares, tente provar as afirmações abaixo:

Proposição 6.6. São válidas as sentenças

1. “A soma de dois ı́mpares é sempre par.”

2. “O produto de dois ı́mpares é sempre ı́mpar.”

3. “A soma de dois números racionais é sempre racional.”

4. “O produto de dois números racionais é sempre racional.”

Proposição 6.7. “O número 7 não é par.”

Demonstração: Uma justificativa já foi dada no Exemplo 3.2. Vejamos como seria a prova
por contradição. Por absurdo, suponha que a tese seja falsa. Assumimos então que 7 é par.
Pela definição de número par, existe um inteiro, digamos y0 tal que 7 = 2y0. Como a única
solução desta equação é y = 7/2, obrigatoriamente y0 = 7/2 = 3, 5, que não é um número
inteiro. Os termos em negrito evidenciam a contradição. ut

Para o próximo método, vamos admitir a seguinte propriedade.

Proposição 6.8. Se x é um número racional, existem inteiros p e q 6= 0 tais que x = p/q
satisfazendo mdc(p, q) = 1.

Proposição 6.9. “
√

2 é um número irracional.”

Demonstração: A prova é por contradição. Suponha que
√

2 é um número racional. Pela
Proposição 6.8, existem inteiros p e q 6= 0 tais que

√
2 =

p

q
com mdc(p,q) = 1. (6.2)

Elevando ambos os membros ao quadrado, 2 = p2/q2, ou seja,

p2 = 2.q2. (6.3)

16



Em outra palavras, p2 é par, e assim o próprio p é par, pela Proposição 6.3. Consideremos
p = 2k para algum natural k. Substituindo p na equação 6.3, temos 2q2 = 4k2, ou seja,
também q é par, novamente pela Proposição 6.3. Resumindo, ambos os números p e q são
pares, contrariando a condição mdc(p, q) = 1. ut

Proposição 6.10. “3 +
√

2 é um número irracional.”

Demonstração: Procedemos a prova por contradição. Cabe reparar que usaremos resul-
tados anteriores já provados, para apresentar uma prova rápida do que aquela apresentada
acima. Suponha, por absurdo, que “3 +

√
2 é um número irracional”seja falsa, então 3 +

√
2

é um racional. Sabemos que −3 é um número racional. Denotamos a = (3 +
√

2) + (−3).
Aplicando a regra EU na Proposição 6.4, a deve ser um número racional. Por outro lado,
a =
√

2 é número irracional, pela Proposição 6.9. Chegamos a uma contradição. ut

Vamos salientar um argumento usado acima.

Proposição 6.11. “Se
√

2 é irracional, então 3 +
√

2 é irracional.”

Demonstração: A prova segue pela contrapositiva: “Se 3 +
√

2 é racional, então
√

2 é
racional.”Pelo método, usamos a hipótese “3 +

√
2 é racional”. Basta provar a tese “

√
2 é

racional”. Esquematicamente,

3 +
√

2 é racional.√
2 é racional

De fato, como −3 e 3 +
√

2 são racionais, aplicamos a Proposição 6.6 para inferirmos que√
2 é racional. A prova está completa. ut

Observação 6.12. Cuidado com o que realmente foi feito: Não provamos que
√

2 é racional!
O que provamos foi uma afirmação condicionada: “Se 3+

√
2 é racional, então

√
2 é racional.”

Demonstração: Apresentamos aqui uma outra maneira de provar a Proposição 6.10: apli-
camos a regra MP sobre as Proposições 6.9 e 6.11. ut

7 O Prinćıpio de Indução Finita- PIF

Um método poderoso de demonstração matemática é o Prinćıpio de Indução Finita - PIF.

Muitas afirmações matemáticas são do tipo ∀nP (n), onde P (n) denota um predicado
sobre o universo dos naturais positivos, aqui denotado por U = N∗. Um grande obstáculo
para provar ∀nP (n) é o fato de que o universo é infinito. Em muitas situações deste tipo
recorremos ao PIF, cujo enunciado segue.
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Teorema 7.1. Seja P (n) um predicado sobre o universo U = N∗. Suponha que as duas
afirmações abaixo são verdadeiras:

1. P (1) é verdadeiro.

2. Para todo natural positivo k, se P (k) é verdadeiro então P (k+1) também é verdadeiro.

Nas condições acima, o PIF afirma que P (n) é verdadeiro para todo natural positivo n.

O PIF afirma que o seguinte argumento é leǵıtimo:

P (1)
∀k[ P (k)→ P (k + 1) ]

∀nP (n)

Vamos ilustarar o método com alguns exemplos.

Proposição 7.2. Iniciamos com a conhecida fórmula da progressão aritmética. Para todo
natural n,

1 + 2 + 3 + . . .+ n =
n.(n+ 1)

2

Demonstração: Para aplicar o PIF, um passo importante é identificar o predicado. Neste
caso, definimos o predicado

P (n) := “1 + 2 + 3 + . . .+ n =
n.(n+ 1)

2
.”

A afirmação P (1) equivale a proposição lógica “ 1 = 1.2/2”, que é claramente válida. Para
fixar notação, observe que a proposição P (2) equivale a proposição lógica “ 1+2 = 2.3/2”,
P (3) coincide com “ 1+2+3 = 3.4/2”, e assim sucessivamente.

Vamos ao segundo passo. Seja k um natural fixado. Desta forma, P (k) comporta-se como
proposição. Admitimos que P (k) é verdadeiro, ou seja, vale a igualdade

1 + 2 + 3 + . . .+ k =
k.(k + 1)

2
. (7.1)

Precisamos provar que P (k + 1) é verdadeiro, ou seja,

1 + 2 + . . .+ k + (k + 1) =
(k + 1).((k + 1) + 1)

2
. (7.2)

Como sair da equação (7.1) e chegar à equação (7.2)? Para usar o PIF, o ponto crucial está
em responder esta questão. Um análise entre os primeiros membros das equações acima já
fornece a dica: a diferença entre tais membros é o fator aditivo k+ 1. Adicionando k+ 1 em
ambos os membros de (7.1), obtemos

1 + 2 + . . .+ k+(k + 1) =
k.(k + 1)

2
+(k + 1). (7.3)
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Ainda não chegamos a (7.2). Um simples manipulação algébrica mostra que k.(k + 1)/2 +
(k+1) = (k+1).(k+2)/2, implicando em (7.2) através de (7.3). O resultado segue pelo PIF. ut

Muitos livros não explicitam o predicado. Optamos por uma prova detalhada para realçar
as noções lógicas.

Proposição 7.3. Para todo natural n, n2 ≥ 2n− 1.

Demonstração: Definimos o predicado P (n) := “n2 ≥ 2n− 1”. Como “1 ≥ 2.1− 1”, P (1)
é V. Vamos ao passo indutivo. Fixado k ≥ 1, suponha que P (k) é verdadeiro, ou seja,
k2 ≥ 2k − 1. Queremos provar que P (k + 1) é verdadeiro, ou seja, (k + 1)2 ≥ 2(k + 1) − 1,
ou equivalentemente,

(k + 1)2 ≥ 2k + 1. (7.4)

O desenvolvimemto de (k + 1)2 = k2 + 2k + 1 apresenta o fator k2. Já podemos acionar a
hipóteste indutiva k2 ≥ 2k− 1. Logo

(k + 1)2 ≥ (2k− 1) + 2k + 1 (7.5)

Como obter a desigualdade (7.4) usando (7.5)? A diferença está no termo (2k− 1). Como
(2k− 1) ≥ 0, para todo k, obtemos (7.4). A asserção fica provada pelo PIF. ut

Proposição 7.4. Consideremos agora um caso da fórmula da progressão geométrica. Para
todo natural positivo n,

1 + 31 + 32 + . . .+ 3n =
3n+1 − 1

2
.

Demonstração: Vamos aplicar o PIF. Para evitar confusão nos ı́ndices, convém definir o
predicado associado:

P (n) := “1 + 3 + 32 + . . .+ 3n =
3n+1 − 1

2
.”

A afirmação P (1) equivale a proposição lógica “ 1 + 3 = (32 − 1)/2”, que é claramente
verdadeira.

Para fixar notação, observe que a proposição P (2) equivale a proposição lógica “ 1+3+9 =
(33 − 1)/2”.

Vamos ao segundo passo. Fixado k, P (k) comporta-se como proposição. Admitimos que
P (k) é verdadeiro, ou seja, vale a igualdade

1 + 3 + 32 + . . .+ 3k =
3k+1 − 1

2
. (7.6)

Queremos provar que P (k + 1) é verdadeiro, ou seja, a igualdade

1 + 3 + 32 + . . .+ 3k+1 =
3(k+1)+1 − 1

2
(7.7)
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Como obter a equação (7.7) usando a equação (7.6)? Podemos iniciar com o lado esquerdo
de (7.7). Notemos que

1 + 3 + 32 + . . .+ 3k+1 = [1 + 3 + 32 + . . .+ 3k] + 3k+1.

O passo crucial é perceber que a parte em negrito já está calculada, conforme (7.6), cuja
soma é (3k+1 − 1)/2. Desta forma,

1 + 3 + 32 + . . .+ 3k+1 =
3k+1 − 1

2
+ 3k+1. (7.8)

A computação do lado direto fica:

3k+1 − 1

2
+ 3k+1 =

3k+1 − 1 + 2.3k+1

2
=

3k+2 − 1

2
. (7.9)

Combinando as equações (7.8) e (7.9), obtemos (7.7). O resultado segue pelo PIF. ut

8 Conexões entre lógica e teoria dos conjuntos.

Vamos interpretar o argumento “todos os ganhadores do prêmio Nobel são criativos, Sara-
mago2 ganhou este prêmio; logo, Saramago é criativo” na óptica da teoria dos conjuntos.
Seja U o universo das pessoas e os predicados A ser prêmio Nobel, B ser criativo. Defina
o conjunto dos prêmios Nobel A ={ x ∈ U / A(x)} e o das pessoas criativas B = { x ∈ U
/ B(x)}. Observe agora que o argumento acima:∀x [A(x)→ B(x)] e A(s) logo B(s) , onde s
denota Saramago tem o mesmo significado de: A ⊆ B e s ∈ A, logo s ∈ B.

Dado um predicado A, selecionar todos os sujeitos x do universo U tais que satisfaçam
a setença A(x) induz a “criação ” de um conjunto A ={ x ∈ U / A(x) é verdadeiro}, ou
simplesmente A ={ x ∈ U / A(x)}. Note que A(x) representa a cláusula para a escolha de x.

Certamente A é subconjunto de U . Mais ainda, A = U se A(x) é satisfeita para todo
x, ou seja ∀xA(x) é verdadeira. Por outro lado, A = ∅ quando sempre falha A(x), ou seja
∃xA(x) é falso. Assim, acabamos de verificar as relações :

Proposição 8.1. Em vista das notações acima, temos as equivalências:

(1) A = U ∀xA(x) é V
(2) A = ∅ ∃xA(x) é F

As “coincidências” não param por áı. Vamos aprofundar a ligação entre lógica e conjuntos.
Vimos operações lógicas e também operações sobre conjuntos. Elencamos abaixo uma lista
de algumas conexões. Para os nossos propósitos, além de A, inclua os predicados B e C e
seus respectivos conjuntos induzidos: B = { x ∈ U / B(x)} e C = { x ∈ U / C(x)}. O śımbolo
s denota um sujeito particular de U .

2Saramago: escritor português.
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Proposição 8.2. São válidas as conexões:

(3) s ∈ Ac(complementar de A) A(s) é F
(4) s ∈ A ∪ B A(s) ∨B(s) é V
(5) s ∈ A ∩ B A(s) ∧B(s) é V
(6) A ⊆ B ∀x [A(x)→ B(x)]
(7) A ⊆ B se e somente se Bc⊆ Ac ∀x [A(x)→ B(x)] ≡ ∀x [∼ B(x)→∼ A(x)]

Muitas outra conexões podem ser obtidas , por exemplo a transitividade de ⊆ é traduzido
para a transitividade da implicação em predicados, ou seja, “se A ⊆ B e B ⊆ C então A ⊆ C
” é equivalente a “se ∀x [A(x)→ B(x)] e ∀x [B(x)→ C(x)] então ∀x [A(x)→ B(x)] ”.

Resutagos da teoria dos conjuntos podem ser obtidos através de aplicações da inferências
lógicas.

Exemplo 8.3. O resultado “ se s ∈ A ∪ B e s /∈ B então s ∈ A ” é uma simples consequência
do silogismo disjuntivo: “ se A(s) ∨B(s) e ∼ B(s) logo A(s).

Em outras situações, o uso de conjuntos facilita o entendimento de alguns enunciados
lógicos:

Exemplo 8.4. Vamos verificar se é sempre válida a implicação:

[(∃xA(x)) ∧ (∃xB(x))]→ ∃x [A(x) ∧B(x)]

Pelas linhas (2) e (5), este resultado é equivalente a

se A 6=∅ e B 6=∅ então A ∩ B 6=∅

Tome, por exemplo, A o conjunto dos números pares e B os ı́mpares. Então o resultado
acima não se verifica e, por consequência, a implicação também não.

As veses, fica mais fácil interpretar os argumentos através de resultados já conhecidos da
teoria dos conjuntos. Talvez o exemplo abaixo convença o leitor.

Exemplo 8.5. Dadas as premissas: “(1) minhas panelas são as únicas coisas feitas de lata
que possuo ”, “(2) acho todos seu presentes muito úteis ”, “(3) Nenhuma das minhas panelas
tem a menor utilidade ”. Encontre uma conclusão. Resolução: Seja U o conjunto de todas as
coisas que possuo, A o conjunto das feitas de lata, B minhas panelas, C minhas coisas úteis e
D as que foram presentes seus. Então (1),(2),(3) se traduzem como A=B, D⊆ C,B ∩C = ∅.
Mas B ∩D ⊆ B ∩C , pois D⊆ C. Assim B ∩D = ∅ e portanto A∩D = ∅, ou seja, “nenhum
dos presentes que você me deu é feito de lata. ”
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