Légica de Predicados !
E. L. Monte Carmelo

Departamento de Matematica
UEM-Universidade Estadual de Maringa

2013

Conteudo
1 Predicados

2 Quantificadores
2.1 Operador Universal: V . . . . . . .. . .
2.2 O operador existencial: 3. . . . . ... ... o

2.3 Uso de quantificadores . . . . . . . . . . . ... e
3 Predicado com mais de uma variavel.
4 Calculo de predicados

5 Inferéncias
5.1 Exemplificacao universal: EU . . . . .. .. ... oo
5.2  Generalizacdo universal: GU . . . . . ... .. ...
5.3 Exemplificacdo existencial: EE . . . . ... ... ... 0 00 0L,
5.4 Generalizacao existencial: GE . . . . .. ... 0000000

5.5 Usodasregras . . . . . . . .o e

6 Métodos de provas na matematica
7 O Principio de Indugao Finita- PIF

8 Conexoes entre légica e teoria dos conjuntos.

!Este material é continuacdo da apostila Ldgica Proposicional.

SR W W

11
11
12
12
12
12

13

17

20



1 Predicados

A Loégica proposicional nao é suficientemente poderosa para englobar todas as afirmacoes
necessarias em matematica. Nos também precisamos lidar com expressoes do tipo

x>0, x+y=20, z>y.

que nao sao proposicoes. De fato, a andlise da primeira mostra que ela nao assume valor V,
pois “x > 0 ” falha quando z = 0 e também nao pode ser F, pois “x > 0 ” vale quando
x = 1. Sentencas andlogas ocorrem também na nossa lingua: “Ela vive em Maringd” pode
ser reformulada como

x vive em Maringa.

9

onde z é variavel e “vive em Maringa ” é um predicado.

Dicionarios apresentam as seguintes defingoes do vocabulo predicado: “atributo ou pro-
priedade caracteristica de alguma coisa”, “termo da oragdao no qual se enuncia um fato ou se
diz alguma coisa do sujeito”, por exemplo:

(1) « estuda légica ”
(2) « é maior do que zero.

2

Note que tais predicados nao assumem valores-verdade. Para torna-los propocoes, é necessario
especificar o sujeito, por exemplo:

2

(1) “ Alexandre estuda légica.
(2) “ Dois é maior que zero.”

Vamos nos fixar no segundo exemplo. Com a variacao do sujeito na oragao, digamos:

“ Dois é maior que zero.”
“ Cinco negativo é maior que zero.”

obtemos distintas proposigoes (cada sujeito forma uma proposigao).

A fim de estudarmos esta classe de proposicoes, podemos denotar o predicado “é maior
ue zero”, “> 0” por P, e associd-lo a um sujeito genérico x:
b )

P(z): “z > 0" ou ainda P(z) := “z > 0"

Desta forma, as duas dltimas proposicoes ficam: P(2) e P(—5). Note que P(x) ndo assume
valor V ou F quando o sujeito x nao estd especificado.

Cabe um comentéario. Com a variagao do sujeito x, novas proposi¢oes P(x) sao geradas.

Formalmente, denote por C uma classe de proposi¢ées. Dado o universo U, um predicado P
pode ser visto como uma funcao abaixo

P:U—-C
x — P(x)



2 Quantificadores

Repare agora nas sentencas

Alguém vive em Maringa.
Todos os niimeros sao maiores que zero

As palavras grifadas indicam, de uma forma ou de outra, a ideia de quantidade.

O interesse do cdlcudo de predicados consiste em “quantificar” os predicados, obtendo-
se e estudando-se classes de proposigoes. Ao invés de isolarmos proposigoes P(1), P(2),...
estaremos interessado no estudo simultaneo de toda a classe de proposigoes P(x) obtidas
através de um dado predicado P. Para tanto, a estratégia serda quantificar os predicados e
as formas mais comuns envolvem dois quantificadores: universal (para todos) e existencial
(existe algum) denotados por V e 3, respectivamente. Daqui em diante, P(z) denota um
predicado arbitrario com varidavel x.

2.1 Operador Universal: V
Seja P(x) um predicado com varidvel z. A proposigao:
“Para todo sujeito x, a afirmagao P(x) é verdadeira”,

denotada simbolicamente por
VzP(x)
esta associada ao predicado cuja varidvel x foi quantificada universalmente.

O operador VzP(z) é verdadeiro quando absolutamante todas as proposigoes P(z) sao
validas na medida que variamos x.

Retornemos ao nosso predicado P(x) : “z > 0 7. Se dissermos: “para todo natural po-
sitivo z, x > 0 7 é agora sim uma proposigao verdadeira, pois P(1), P(2), P(3),... sdo todas
verdadeiras. No entanto, se dissermos, “para todo x numero inteiro, £ > 0 7 é uma pro-
posigao falsa, pois, digamos, P(-1) falha. Repare que basta encontrar apenas um P(x() falso,
onde xg é convenientemente escolhido, para que VaxP(z) receba valor F.

Assim, é necessario também especificar em qual universo do discurso U, universo a qual
x pode assumir valores, para que a operagao fique bem definida. No primeiro e segundo caso
acima, U coincide com o conjunto dos naturais positivos e inteiros, respectivamente.

Dizer que VxP(x) é falso no universo U significa que existe algum o € U onde P(xq)
falha.



2.2 O operador existencial: J
A frase “para algum z, P(x)” simplifica:
“Existe pelo menos um sujeito = para o qual a afirmagao P(x) é verdadeira.”

foi quantificada existencialmente e serda denotada simbolicamente por
JzP(x).

Note que JzP(x) busca, dentro do universo U se hé algum sujeito tal que torne a sentenga
(relativa ao sujeito) verdadeira. Se tal elemento for encontrado, 3z P(x) recebe valor V, caso
contrério, serd F.

2.3 Uso de quantificadores

Exemplo 2.1. Sejalf o conjunto dos niimeros naturais positivos e P(x) o predicado “z? = z”.
Entao VxP(x) é falso porque P(3) é falso. Por outro lado, 3zP(x) é verdadeiro porque pelo
menos uma das proposi¢oes P(x) se verifica, embora exista apenas uma proposicao valida,
quando x = 1.

Exemplo 2.2. Se o universo é o conjunto dos nimeros inteiros, entao:

[z =3]éV [z +2=2]éV fz<z+1]éV
Ve[r=3]éF Vzjx+2=2]¢éF Vzfr<ax+1]éV

Exemplo 2.3. Para os nimeros naturais positivos como universo de discurso, seja Q(z) o
predicado “z? + z + 41 é primo”.

Claramente JzQ(z) é V, pois Q(1) vale. Inspecoes para z = 1,2,3,... mostram que
Q(1),Q(2),Q(3),... sao vélidos, levando-nos a tentacao de considerar VzQ(x) também ver-
dadeiro. (Convém alertar aqui que este procedimento pouco cuidadoso pode gerar erros).
Embora Q(1),Q(2),...,Q(39) sejam todos verdadeiros, ()(40) é falso. Por outro lado, se o
universo fosse U ={1,2,...,30}, ambas JxP(z) e VxQ(x) seriam vélidas.

Assim como utilizamos os conectivos 16gicos em proposigoes, podemos opera-los também
em predicados, formando sentencas mais complexas. Aproveitando os exemplos acima, ~
Q(n) representa o predicado “n? + n + 41 nio é primo”. Aplicando os conectivos légicos ja
conhecidos, podemos criar as proposicoes: Vz(Q(z) — P(x)), Jz(P(x) A Q(z)) etc. Tente
determinar os respectivos valores verdade.

Exemplo 2.4. Aproveitando os predicados acima P(z) := “2? = 2" e Q(z) := “2% + 2 + 41
é primo” e o universo Y = N*, vamos calcular as proposigoes:

e[ P(z) = Qz) ] V[ P(z) = Q) ]

Um estratégia de solucao é simplificar a expressao por meio de predicado auxiliar. Neste caso,
definimos o predicado R(z) := P(x) — Q(z). Basta estudar 3z R(x) e VaR(z). Como P(1)



e Q(1) sao V, a tabela verdade do condicional garante que R(1) é V e, como consequéncia,
JxR(z) é V. Consideremos um natural = > 2 fixo. Logo P(z) e Q(z) comportam-se como
proposigoes. Neste caso, j& vimos que P(z) é F. Independente do valor de Q(z), o condicional
P(z) = Q(x) serd V. O raciocinio é valido para todo x > 2. Logo VxR(z) é também V.

Observagao 2.5. (*) Quando o universo do discurso é finito, digamos U ={1,2,...,n}, as
proposigoes VxP(x) e xP(x) podem ser simuladas via procedimentos computacionais. De
fato, vamos determinar o valor verdade de 3z P(x), onde P é um predicado fixado. Precisamos
assumir que cada P(i), 1 <1i < n, é decidivel computacionalmente, em outras palavras, existe
uma fungao computacional booleana f que determina o valor verdade f(P(i)) para cada
proposigao P(i), ou seja, f(P(i)) = “true” se P(i) é verdadeira, e “false” caso contrério.
O procedimento abaixo estd em “pseudo-Pascal”. Dados iniciais: U ={1,2,...,n} e o
predicado P. Saida: o valor de JzP(x).

( P: vetor de comprimento n: {P[1], P[2],..., P[n]}
b: varidvel boolena, i: contador
Begin: b:=false, i:=0

While ((b=false) and (i < n ) do {
Write( b); End

1:=1+1
b:=f(Pli])

Note que o valor verdade de 3z P(x) concide com a varidvel boolena b.

3 Predicado com mais de uma variavel.

A utilizacao de predicados na légica engloba situagoes bem mais abrangentes, por exemplo, o
predicado “vive em Maringd” pode ser generalizado a P(z,y) : “x vive na cidade y”, fazendo
com que tal sentenca dependa agora de duas varidveis: z(sujeito) e y(cidade em questao).

Analogamente, podemos considerar predicados que dependam de uma ou mais varidveis
e utilizar quantificadores para cada uma delas.

Definigao 3.1. Como P(z) se tranforma em proposi¢do na medida que atribuimos valores
especificos para x, dizemos entao que x é variavel livre, pois o valor verdade fica dependendo
de . No entanto, o valor verdade de VzP(x) nao depende de z, e assim dizemos que x é
variavel ligada.

Exemplo 3.2. Calculemos as proposicoes
dxTy (z = 2y) Vady (z = 2y) (3.1)

onde o universo de ambas as varidveis x e y é o conjunto dos ntimeros inteiros. Resolucao: o
predicado x = 2y apresenta ambas as varidveis livres. Como a expressao interna 3y (x = 2y)
apresenta x como variavel livre e y como varidvel ligada, passa a ser um predicado que
depende apenas de x. Defina entao o predicado P(x) := Jy (x = 2y), que s6 depende de
x. Agora as proposicoes em (3.1) correspondem a

dzP(x) VzP(z). (3.2)



Novamente recorremos ao uso de predicado auxiliar. Qual a vantagem? O predicado com
duas varidveis é reduzido a uma varidavel em (3.2), e neste ambiente sabemos trabalhar.

Afirmamos que P(6) := Jy (6 = 2y) é V. De fato, o predicado 6 = 2y s6 depende agora de
y. Como y = 3 satifaz tal predicado, P(6) é V. Olhamos agora para a variavel z. O sujeito
x = 6 torna o predicado P(z) vélido, e assim 3z P(z) é V. Com ajuda do predicado auxiliar,
trabalhamos primeiro com uma varidvel, e depois com a outra.

Para que Yz P(x) seja F, basta exibir um inteiro onde o predicado P(z) falha. Pois bem,
afirmamos que P(7) é F. Como justificar? Sabemos que a tnica solugao de equacao 7 =2y é
7/2, que ndo é um nimero inteiro. Em outra palavras, nenhum inteiro satisfaz tal equacao.

Exemplo 3.3. Considere os niimeros naturais positivos como universo de discurso U para
ambas varidveis e P(z,y) o predicado "z < y ”. Note que ele assume agora o papel de uma
fungao: P: U xU — C: (z,y) — P(z,y). Ambas as varidveis = e y estdo livres, no sentido
que o valor verdade de P(x,y) depende de ambas as varidveis x e y. Na sentenca Iz P(z,y),
x é variavel ligada, mas y é livre, de modo que ela ainda nao assume valor verdade. O
predicado JzP(z,y), “ existe um x tal que = < y ”, se transforma em proposi¢ao na medida
que atribuimos valores especificos para y, por exemplo: JxP(z,1) é F, JzP(x,2) é V (pois
x = 1 satisfaz a sentenca), e assim por diante. Agora valor-verdade de 3z P(x, y) nao depende
de z (z estd ligada) mas depende de y, ou seja, apresenta y como varidvel livre e pode ser
pensada como um novo predicado que apenas depende de y. Desta forma, podemos quantificar
tal varidvel, tranformando finalmente numa proposicao. Se quantificamos com o operador
universal, a proposicao Vy3zP(z,y) é F, pois JzP(z,1) é F. Por outro lado, com o operador
existencial, JyJzP(x,y) é V (desde que JzP(x,2) é V, basta tomar y = 2).

H4 oito modos de quantificar um predicado P(x,y) com duas varidveis:

VaVy, Vady, YyVe, Vydx
dxVy, dxJy, JyVa, Jydx

Uma questao natural é saber se os quantificadores podem ser comutados, ou seja, se a
ordem deles importa no enunciado. Para responder esta pergunta, vejamos o exemplo abaixo.

Exemplo 3.4. Este exemplo ilustra a importancia da ordem dos quantificadores. Considere

P(x o predicado : “ y é mae de x”. Para a varidvel x, seja o universo do discurso a
) )

populacao mundial que estd viva; e inclua as pessoas falecidas no universo da varidvel y.

Apresentamos alguns modos de quantificd-la seguido com a respectiva interpretacao e valor-

verdade:
“ qualquer pessoa tem uma mae ” (V)

(1) (z,9)

(2) JyVaxP(z,y) * alguma pessoa é mae de todo mundo ”(F)
(3) (z,y) “todo mundo é uma mae. ”(F)

(4) FaVyP(z,y) * uma pessoa é filho de todo mundo ” (F)

Note que as frase (1) e (2) apresentam enunciados e até valores distintos, embora a tnica
diferenca das férmulas seja a ordem dos quantificadores. Analogamente, vale para as frases
(3) e (4); refletindo a importancia da ordem dos quantificadores.



Exemplo 3.5. Considere o universo de = e y os naturais positivos e o predicado P(z,y) :
43 Xz ”
y > 27,

(a) Para determinar a proposigao Va(JyP(x,y)), inicialmente consideramos o predicado in-
terno JyP(x,y), onde y esta ligada e x livre. Assim, tal expressdo pode ser vista como
um predicado na varidvel e entdo, atribuindo valores para x, obtemos: JyP(1,y) é V
(pois para y = 3, torna P(1,3) valida), JyP(2,y) é V (pois 5 > 4) e assim por diante.
O caso geral VxIyP(z,y) : “ para todo nimero x, existe um nimero y maior que 2*”
é V (basta tomar y = 2% + 1).

(b) Se invertermos o ordem dos quantificadores, JyVa(P(z,y), lido ¢ existe um nimero y

maior que todas as poténcias na base 2” é F. De fato, o predicado interno VxP(z,y),
que significa “ para todo x, y > 2%”, é sempre F para todo y, basta tomar x = y e dai
obtemos y > 2% que é F.

Exemplo 3.6. Muito conceitos matematicas sao definidos através de predicados. Vejamos
alguns exemplos.

Universo das varidves conceito (predicado)  definigdo do conceito

nimeros inteiros x é par Jyzx =2y
ndmeros inteiros x é nimero quadrado 3Jy z = y>
numeros inteiros a divide b dJyb=y.a
nameros reais x é inversivel dyxy=1
matrizes reais 2 x 2 x é inversivel dy x.y = I I=matriz identidade

O primeiro predicado foi explorado no Exemplo 3.2. Naquele exemplo, a traducao de 3z P(x)
corresponde a frase “Existe um inteiro par”, enquanto que VzP(x) significa “Todo ntimero
inteiro é par”.

Exemplo 3.7. Mais ainda, muitas propriedades matematicas podem ser expressa em termos
de predicados. Vejamos formulacoes légicas de algumas propriedades dos niimeros reais:

VaVyVz [z.(y + z) = xy + xz] | o produto é distributivo

YWV [z +y = 7] existe elemento neutro para a soma
Va3dy [z +y = 0] todo nimero real tem oposto
Vex#0— (Jy xy=1)] | todo real diferente de zero possui inverso

Exemplo 3.8. (*) O uso da predicados aparece praticamente em todos os conceitos da
matematica. Ilustremos um exemplo na geometria analitica. Dados dois vetores u e v em
R3, dizemos que o conjunto {u,v} é linearmente dependente se um deles é um miiltiplo
escalar do outro. A traducao logica fica da seguinte forma. Denote o predicado de duas
varidveis (vetores) “{u,v} é linearmente dependente” por P(u,v). O universo da varidvel «
¢é o conjunto dos nimeros reais. Desta forma

P(u,v) :=3Ja(u = a.v) V (v=a.u),

onde . denota o produto escalar.



4 Calculo de predicados

No célculo proposicional, podemos criar proposi¢cbes novas combinando conecticos légicos
sobre proposigoes mais simples. Tautologias nos permitem criar regras de equivaléncia entre
proposicoes, as quais sao usadas na simplificacao de expressoes logicas. Ha também regras
de inferéncias.

Utilizaremos os recursos ja vistos em légica proposicional para estudarmos a légica de
predicados.

Nos préximos comentarios, denotamos por P e () duas proposigoes quaisquer e P(z) e
Q(x) dois predicados quaisquer, ambos com varidvel livre x.

1. Assim como fizemos com as proposicoes, podemos criar naturalmente novos predicados
via conectivos légicos, a saber:

~ P(z) P(x) AQ(x) P(x) Vv Q(z)
P(z) = Q(x) P(z) < Q(x)

2. Algumas identidades légicas: (=) para predicados também podem ser “importadas ”
do célculo proposicional. Citamos:

Proposicoes Predicados
P=~~P P(z) =~~ P(x)
P—-Q=~PVQ P(z) = Q(z) =~ P(x) V Q(x)

3. Lembramos que os predicados quantificados em todas as varidveis (por exemplo: VzP(x),
JxVyR(z,y) ) sdo transformados em proposigoes e podem ser estudadas como tais.

Ha também tautologias préprias nos predicados. Citamos alguns casos particulares. Dizer
que “Todas as bolas sao brancas ” tem o mesmo significado de “Nao hé bola de outra
cor 7. Em notacao légica, VrP(x) =~ Jr ~ P(z), onde P(x) denota o predicado “ser
bola branca ”. Analogamente, dizer que “Nem todas as bolas sdo brancas ” tem o mesmo
significado de “H& uma bola de outra cor”, ou simbolicamente: ~ VxP(z) = 3z ~ P(z). A
substituicao do predicado nao invalida a equivaléncia légica. Acabamos de ilustrar relagoes
entre os quantificadores. Devido a sua importancia, estudaremos tautologias desta natureza

isoladamente.

Teorema 4.1. As tautologias sao vdlidas:

1) ~VxP(z) = 3z (~ P(x))
2) ~ JzP(x) = Vx (~ P(z))
3) VeP(z) =~ 3z (~ P(x))
4) JxP(x) =~ Va(~ P(x))

co



Demonstragao: Vamos considerar a primeira delas. Devemos lembrar que
~ VzP(x) = 3z (~ P(z)) se e somente se ~ VzP(x) <> Jx (~ P(x)) é tautologia. Assim,
basta verificar que as proposigoes ~ VxP(x) e dx (~ P(x)) assumem sempre o mesmo valor-
verdade. De fato, se ~ VzP(z) é V, entao Yz P(z) é F, ou seja, existe pelo menos um z tal
que P(z) é falso, ou equivalentemente, existe pelo menos um x tal que ~ P(x) é V, e esta
ultima frase pode ser interpretada por 3z ~ P(x). As outras podem ser obtidas a partir da
primeira ou via argumentos como acima. O

Seja P um predicado com universo de discurso formado pelos elementos 1 e 2. Aplicando
a tautologia (1) acima, temos:

~ (P(1)ANP(2)) =~VzP(z) =3z (~ P(zx)) =~ P(1)V ~ P(2)

Note que assim obtemos novamente a lei de De Morgan (ver regras na apostila de 1égica
proposicional). Por esta razao, as regras acima sao chamadas Leis De Morgan generalizadas.

A regra (3) acima afirma que podemos obter o quantificado 3 partindo do quantificador
V e da negagdo ~ . Enquanto a regra (4) afirma resultado andlogo para o quantificador V .
Desta forma, basta um quantificador (e os conectivos 16gicos) para gerar todas as férmulas
na légica de predicados.

As regras (1) e (2) sao utilizadas para o célculo da negacao de um quantificador. Vejamos
alguns exemplos:

Exemplo 4.2. Digamos que um estudante, quando estd aprendendo equacoes literais, acre-
dite na validade da seguinte lei:

Vo [(z + 12 =22+ 1]

Nés podemos alertar ao estudante que a lei é falsa mostrando que sua negacgao é verdadeira,
ou seja, que Jx [(m +1)2 £ 22 + 1] se cumpre, basta tomar ou x = 1, ou x = 2.

Exemplo 4.3. Vamos calcular a negacao de VxVy (x <y—ax?< y2). Aplicando o Teorema
4.1,

N[VxVy(x<y—>x2<y2)]EHm~[Vy(:v<y—>1:2<y2)]EEIxEIyN(x<y—>x2<y2).

As identidades 16gicas DC e DM afirmam que ~ (P — Q) =~ (~PV Q) = P\ ~ Q,
portanto vale a identidade ~ (z <y — 22 <y?) = (z < y) A (#* > y?). Finalmente, a
negacao fica

3y ((x < y) A (2? > %)) .

Exemplo 4.4. (*) Retornemos ao Exemplo 3.8. Recorde que o conjunto {u, v} é linearmente
independente (LI) quando o conjunto {u,v} nao ¢ linearmente dependente, ou seja, ~



P(u,v). Vamos expressar a conde¢ao LI por meio do Teorema 4.17 O conjunto {u,v} é
linearmente independente (LI) equivale a:

(Teorema 4.1)
(regra DM )

~ [Fa(u=awv)V (v=au)]
Va ~ [(u = a.v) V (v = a.u)]
Va [(~u=av)A ~ (v=au

Va [(u # a.v) A (v # a.u)] .

A {ltima expressao nos diz que o conjunto {u,v} é LI quando um néao pode ser escrito como
multiplo escalar do outro, conforme aprendemos na Gemetria Analitica.

~—

Exemplo 4.5. (*) Vejamos uma ilustragao das propriedades acima no ambito do calculo.
O limite lim,_,, f(x) = L pode ser reformulado no ambito da légica de predicados conforme

descricao abaixo:
VeddVax (0 < |z —a| <6 — |f(x) — L| <¢).

Algumas vezes precisamos verificar que lim,_,, f(z) # L. Tentar determinar a negagdo do
limite diretamente pode causar confusao, pois tal formula envolve trés quantificadores. O uso
do Teorema 4.1 pode ser muito 1til, como por exemplo neste caso. Assim, lim,_,, f(x) # L
¢é equivalente a:

~ [VedoVz (0 < |z —a| <0 — |f(z) — L| < ¢)]
Je ~ [TV (0 < |z —al <0 — |f(x) — L] < ¢)]
Vo ~ Vo (0 < |z —a] < d — |f(x) — L| < ¢)]
FeVodx ~ [(0 < |z —a| <0 = |f(z) — L| < ¢)]
JeVodr ~ [~ (0 < |z —al <)V (|f(z) — L] <
FeVo3x [(0 < |z —a| < ) A~ (|f(z) — L| < g)]
FeVo3z [(0 < |z — al < &) A|f(z) — L| > €]

o™
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Ao trabalharmos com conceitos mateméticos (provar resultados, negar etc...), estamos
utilizando (explicita ou implicitamente) passos que sao justificados por regras logicas. Um
relativo embasamento em Légica é essencial para evitar passos incorretos.

Observagao 4.6. (*) O célebre problema de Fermat, resolvido em 1995, depois de mais
de 300 anos de incessantes pesquisas (durante este tempo, tal probema era a mais famosa
conjectura em aberto em toda a matematica), consistia “simplesmente ” em decidir o valor-
verdade da proposicao abaixo:

Jp>33rIy3z (2" +y" = 2")

onde o universo do discurso compreende os niimeros naturais positivos. A resposta para este
problema é negativa.

Se tentassemos procurar uma solucao do sistema via busca computacional, e se fosse
encontrada, a proposicao seria verdadeira. Como a resposta é falsa, significa que o programa
jamais chegaria ao final.
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Outros exemplos de tautologias no calculo de predicados sao:

Teorema 4.7. Mais Tautologias:

5) VaVyP(z,y) = VyVeP(z,y)
6) dzIyP(x,y) = JyIzP(z,y)
7) JxVyP(z,y) = VyIaP(x,y)
8) VeP(z) = JxP(x)

Outra forma de quantificacao é “existe um e apenas um” elemento do universo do discurso
que torna o predicado verdadeiro. Este quantificador é representado por 3!. Tente expressa-lo
em func¢ao dos outros conectivos e quantificadores.

5 Inferéncias

Andlogo ao cédlculo proposicional, podemos também realizar argumentos na légica de pre-
dicados. No entanto, regras adicionais de inferéncia, que estdao fora do nosso objetivo, sao
necessarias para provar afirmagcoes envolvendo predicados e quantificadores.

J& vimos regras de inferéncia (proposicionais) com intuito de concluir resultados verda-
deiros através de argumentos legitimos. Veremos alguns casos simples de regras de inferéncia
em predicados:

5.1 Exemplificacao universal: EU

Vamos supor o enunciado verdadeiro: “Todos somos mortais” (premissa). Considerando o
predicados M (z):“z é mortal ”, com x no universo dos humanos, o enunciado fica: VzM (x).
Como assumimos verdadeira tal proposi¢ao, na medida que atribuimos sujeitos especificos,
inferimos legitimamante as sentencas:

M(Sécrates) : “ Sécrates é mortal. ”
M(Kafka) : “ Kafka é mortal. ”

que sao verdadeiras, e assim por diante. Portanto, parece plauivel assumir como legitimo o
argumento (regra): o que vale para todos deve valer para um sujeito particular. No enunciado
acima, se vale VzM (x), entao vale para M(c) (conclusao), onde ¢ é um sujeito particular.

A regra de exemplificacdo universal pode ser resumida na forma:

VaP(x)

P(c).

onde P é um predicado qualquer e ¢ é um sujeito escolhido do discurso. Note que esta regra
elimina o quantificador universal.
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5.2 Generalizacao universal: GU

A segunda regra de inferéncia, denominada generaliza¢do universal, permite a quantificacao
de uma afirmacao. Se mostramos que P(c) vale para todo ¢ do universo de discurso, entao
podemos concluir que VzP(z). O esquema abaixo representa tal argumento (regra):

P(z)
VxP(z)

Note que esta regra inclui o quantificador V.

5.3 Exemplificagao existencial: EE

Tal regra formaliza o argumento: se P(z) vale para algum z, entao P(c) vale para algum sujeito
¢ convenientemente escolhido. A terceira regra de inferéncia chamada de exemplificacdo
existencial é simbolizada por :.

JzP(x)

P(c)

5.4 Generalizacao existencial: GE

Esta ultima diz: se P(c) vale para algum sujeito, entdo deve valer 3xP(x) . A generelizacdo
existencial pode ser representada por

P(e)
JzP(x)

Obs: Nestas regras, ou hé inclusao ou eliminagao de quantificadores.

5.5 Uso das regras

A dedugéo no célculo de predicados € feita usualmente pela aplicagao dos passos seguintes:

1. eliminando quantificadores (regras 1 e 3).

2. “raciocinando” como no céalculo proposicional (isto é, aplicando as conhecidas regras
de inferéncia do célculo proposicional - modus ponens, silogismos, etc).

3. Introduzindo quantificadores (regras 2 e 4).

Vejamos exemplos:
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Exemplo 5.1. Consideremos a situagao:

“ Toda crianca tém direito a educagao”
“ Zequinha é uma crianga ”
“ Logo, Zequinha tem direito a educagao ”

Se C(z) denota: "z é crianga”, D(x): “ z tem direito a educacao” e z representa Zequinha,
temos:

1. Vz[C(x) — D(z)] premissa

2. C(z) premissa

3. C(z) = D(z) 1. exemplif. universal: EU
4. D(z) 2,3 e modus ponens

O argumento é legitimo.

“

Exemplo 5.2. “Sicrates é mortal. Logo, alguém é mortal ”: Se M(x) denota “ x é mortal

” e s denota Sécrates, temos:

1. M(s) premissa
2 JxM(z) GE

Exemplo 5.3. “Todos os ladrées sao espertos, Artur nao é esperto. Portanto, ele nao é
ladrao”. Predicados: L ser ladrao, E ser esperto, a denota Arthur.

1 Vx [L(x) — E(x)] premissa

2 ~ E(a) premissa

3 L(a) — E(a) 1. EU

4 ~ L(a) 2,3 Modus Tollens

6 Meétodos de provas na matematica

Uma teoria matemadtica (teoria dos numeros, teoria dos conjuntos, geometria plana, etc)
inicia-se com um linguaguem prépria (intrinsica a teoria). Partindo de um conjunto de con-
ceitos, defini¢oes, ariomas, postulados, principios (sendo os trés tltimos, afirmagoes aceitas
como verdades absolutas - sem demonstragao), a teoria é construida passo a passo através
de inferéncias logicas: as premissas envolvem os conceitos e axiomas ja assumidos e a con-
clus@o é uma nova assercao derivada das anteriores. Todo o aparato légico (regras logicas,
equivaléncias, implicagoes,...) é um recurso empregado para verificar que tal conclusao é
legitima. Apds obtida tal conclusao, ela pssa a fazer parte dos recursos para provar sentencas
mais complexas.

Como hé uma certa hierarquia quanto a importancia de uma conclusao, estas recebem
denominagaoes distintas. Um teorema é uma afirmacao devidamente demonstrada com grau
maximo de importancia. Um lema é um resultado auxiliar, frequentemente utilizado para
provar um teorema. Um coroldrio é um resultado que decorre imediatamente de um teorema.
Cabe ressaltar uma diferenca, uma proposicGo na matematica é uma sentenca demonstrada,
com grau de importancia menor do que a de um teorema.

13



Para fixar ideia, nos restringimos a teoria dos nimeros. Os conceitos fundamentais sao
os préprios ndmeros: ...,—1,0, 1, 2,... e as operagoes: adicao e multiplicacao. Tomemos
como axiomas todas as propriedades ja conhecidas dos niimeros: comutatividade da soma, da
multiplicacao, distributiva, etc. Conceitos como nimero par, primo nao sao conceitos iniciais
da teoria: eles sao definidos via predicados através de conceitos prévios. Resultados usando
tais conceitos sao provados, gerando teoremas, lemas, etc. Vamos ilustrar como aplicar os
métodos de prova na teoria dos nimeros.

Proposicao 6.1. “O quadrado de um nimero par é par.”

Demonstragao: Denotamos por « a sentenca acima. Em muitas situagoes o quantificador
fica subentendido assim como o universo (conjunto dos ndmeros inteiros). A interpretagao
seria a=“Todo quadrado de um nimero par é par.” A reformulacgao légica precisa

o = Vz[P(z) — P(z?),] (6.1)

onde P(z) denota o predicado “x é par” (definido nos Exemplos 3.2, 3.6) ajuda a entender o
que precisamos fazer.

Para provarmos que « é valido, utilizamos a demonstracao direta. Iniciamos retirando o
quantificador através da regra EU, assim como fizemos na secao anterior. Em outra palavras,
 nao ¢ pensado como uma varidvel, mas como um inteiro fixado.

Caso 1 : Se for escolhido um z fmpar, entdo P(x) é F e automaticamente P(x) — P(z?%) é
V, pela definicao do condicional.

Caso 2 : Se for escolhido um z par, (P(z) é V), precisamos provar que P(z?) é V para
que P(z) — P(z?) também seja V. Pois bem, pela definicio de nimero par, existe
um inteiro ¢ tal que z = 2¢. Assim 22 = (2¢).(2¢) = 2(2¢?), pelas propriedades j4
conhecidas da multiplicacio. Tomando o inteiro k = 2(¢?), reparamos que 2% = 2k, ou
seja, 2 ¢ um nimero par, P(z?) também é V.

Independente de x ser par ou fmpar, P(x) — P(2?) sempre é V. Finalmente, repare que
no argumento acima, nao foi imposta restricao sobre x, ou seja, o argumento é vélido para
todo z. Aplicando a regra GU, a proposicao « fica demonstrada. O

Observagao 6.2. Salientamos que muitos livros omitem: a representacao légica 6.1, as regras
envolvendo quantificadoes (EU, GU), e omitem também o raciocinio por vacuidade apresen-
tado no Caso 1; resumindo a prova ao argumento essencial descrito no Caso 2. Optamos por
uma prova detalhada para realcar as nocoes légicas.

Vamos ver a reciproca de a.

Proposicao 6.3. “Se o quadrado de um numero é par, entdo o proprio numero é par.
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Demonstragao: Denotamos por 8 a sentenca acima. O quantificador novamente fica su-
bentendido assim como o universo (conjunto dos nimeros inteiros). A tradugao légica de
fica

8 = Va[P(x?) - P(a)),
onde P(zx) denota o predicado “z é par.”

Seria natural tentarmos o método direto. Aqui cabe um comentério: na prova anterior,
da varidvel x para x2, basta usar a multiplicacdo, uma operacio bem definida em Z. No
entanto, da varfavel 2 para z, devemos extrair a raiz quadrada. No entanto, nem sempre
podemos aplicar tal operagao no ambiente Z! Assim nao poderemos provar tal afirmacao
pelo método direto.

Recorremos a regra de equivaléncia de predicados CP. Dai o nome do método: prova por
contrapositiva. Pela regra, basta provarmos a validade de

V[~ P(z) —~ P(2?).]

Em outra palavras, provaremos que para todo z, se = é impar entdo z2 é fmpar.

O processo ¢ muito parecido com o anterior. Iniciamos retirando o quantificador através
da regra EU.

Caso 1 : Se for escolhido um x par, entdo ~ P(z) é F e automaticamente ~ P(x) —~ P(x?)
é V, pela definicao do condicional.

Caso 2 : Se for escolhido um x fmpar, (~ P(z) é V), precisamos provar que ~ P(x?) também
éV.
Pela definicdo de ntimero fmpar, existe um inteiro ¢ tal que = 2¢ + 1. Donde 22 =
(2¢ +1).(2¢ + 1) = 2(2¢* + 2q) + 1, pelas propriedades j4 conhecidas da multiplicacao.
Tomando k = 2(¢? + 2¢), reparamos que x> = 2k + 1, com k um ntimero inteiro. Em
outra palavras, 2 é um nimero fmpar, ~ P(z?) também ¢é V.

Aplicando a regra GU, a proposigao (8 fica demonstrada. O

Proposicao 6.4. “A soma de dois pares é sempre par.”

Demonstragao: Denotamos por v a sentenca acima. Esta sentenca é um pouco mais com-
plicada: o predicado associado “se x é par e y também é par, entao a soma x + y € par’deve
ser quantificado em ambas as varidveis com o quantificador V. A formulagao légica fica:

v =Vavy[(P(z) A P(y)) = Pz +y) ]
A prova segue o método direto. Iniciamos retirando os quantificadores. Fixamos = e y.

Caso 1 : Se for escolhido um x fmpar ou um y impar, entdao P(x) A P(y) é F, e automati-
camente a férmula é V.
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Caso 2 : Se for escolhido um z par e um y par, (P(z) é V e P(y) é V), precisamos provar
que P(z +y)) também é V.

Neste caso, existem inteiros ¢ e r tais que x = 2q e y = 2r. Assim z +y = 2q + 2r =
2(q 4+ r). Repare que x 4+ y é um nimero par, ou seja, P(x 4+ y)) também é V.

Independente da paridade de z e y, a férmula (P(x) A P(y)) — P(x + y) sempre é V. Apli-
cando a regra GU, a proposi¢ao v estd demonstrada. O

Definigao 6.5. Um numero z é racional se existem inteiros p e g # 0 tais que z = p/q. Um
numero irracional é um ntimero que nao é racional.

Usando raciocinios similares, tente provar as afirmacoes abaixo:

Proposicao 6.6. Sdo vdlidas as sentencas

1. “A soma de dois impares é sempre par.”

2. “O produto de dois impares é sempre impar.”

3. “A soma de dois nimeros racionais € sempre racional.”
4. “O produto de dois numeros racionais € sempre racional.”

Proposicao 6.7. “O numero 7 nao € par.”

Demonstracao: Uma justificativa ja foi dada no Exemplo 3.2. Vejamos como seria a prova
por contradi¢ao. Por absurdo, suponha que a tese seja falsa. Assumimos entao que 7 é par.
Pela definigao de niimero par, existe um inteiro, digamos yg tal que 7 = 2yg. Como a unica
solugao desta equagao é y = 7/2, obrigatoriamente yo = 7/2 = 3,5, que nao é um nimero
inteiro. Os termos em negrito evidenciam a contradigao. O

Para o préximo método, vamos admitir a seguinte propriedade.

Proposicao 6.8. Se x é um nimero racional, existem inteiros p e q # 0 tais que x = p/q
satisfazendo mdc(p,q) = 1.

143

Proposigao 6.9. 2 € um numero irracional.”

Demonstracao: A prova é por contradicdo. Suponha que v/2 é um nimero racional. Pela
Proposicao 6.8, existem inteiros p e g # 0 tais que

V2 = g com mdc(p,q)=1. (6.2)

Elevando ambos os membros ao quadrado, 2 = p?/¢?, ou seja,

p? =2.4° (6.3)



Em outra palavras, p? é par, e assim o préprio p é par, pela Proposiciao 6.3. Consideremos
p = 2k para algum natural k. Substituindo p na equacio 6.3, temos 2¢> = 4k2, ou seja,
também ¢ é par, novamente pela Proposicao 6.3. Resumindo, ambos os nimeros p e ¢ sao
pares, contrariando a condicao mdc(p, q) = 1. O

Proposicao 6.10. “3+ /2 é wm nimero irracional.”

Demonstragao: Procedemos a prova por contradicao. Cabe reparar que usaremos resul-
tados anteriores ja provados, para apresentar uma prova rapida do que aquela apresentada
acima. Suponha, por absurdo, que “3 + /2 é um ntmero irracional”seja falsa, entdo 3 4+ /2
é um racional. Sabemos que —3 é um nitimero racional. Denotamos a = (3 + v/2) + (—3).
Aplicando a regra EU na Proposicao 6.4, a deve ser um numero racional. Por outro lado,
a = /2 é nimero irracional, pela Proposicio 6.9. Chegamos a uma contradico. O

Vamos salientar um argumento usado acima.

Proposicao 6.11. “Se /2 € irracional, entdo 3 + /2 € irracional.”

Demonstracao: A prova segue pela contrapositiva: “Se 3 + /2 é racional, entao /2 é
racional.” Pelo método, usamos a hipétese “3 + v/2 é racional”. Basta provar a tese “y/2 é
racional”. Esquematicamente,

3 + /2 é racional.
V/2 é racional

De fato, como —3 e 3+ v/2 sdo racionais, aplicamos a Proposigao 6.6 para inferirmos que
V2 é racional. A prova estd completa. O

Observacao 6.12. Cuidado com o que realmente foi feito: Nao provamos que v/2 é racional!
O que provamos foi uma afirmacao condicionada: “Se 3+ +/2 é racional, entdo /2 é racional.”

Demonstragao: Apresentamos aqui uma outra maneira de provar a Proposi¢cao 6.10: apli-
camos a regra MP sobre as Proposigoes 6.9 e 6.11. O

7 O Principio de Inducgao Finita- PIF

Um método poderoso de demonstracao matematica é o Principio de Indugao Finita - PIF.

Muitas afirmagbes matemaéticas sao do tipo VnP(n), onde P(n) denota um predicado
sobre o universo dos naturais positivos, aqui denotado por &/ = N*. Um grande obstdculo
para provar VnP(n) é o fato de que o universo ¢ infinito. Em muitas situagdes deste tipo
recorremos ao PIF, cujo enunciado segue.
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Teorema 7.1. Seja P(n) um predicado sobre o universo U = N*. Suponha que as duas
afirmacgoes abairo sdo verdadeiras:

1. P(1) é verdadeiro.
2. Para todo natural positivo k, se P(k) € verdadeiro entio P(k+1) também é verdadeiro.
Nas condigoes acima, o PIF afirma que P(n) é verdadeiro para todo natural positivo n.

O PIF afirma que o seguinte argumento ¢é legitimo:

P(1)
VE[ P(k) - P(k+1) ]
VnP(n)

Vamos ilustarar o método com alguns exemplos.

Proposigao 7.2. Iniciamos com a conhecida féormula da progressao aritmética. Para todo
natural n,
n.(n+1)

1+2+3+...+n= 5

Demonstragao: Para aplicar o PIF, um passo importante € identificar o predicado. Neste
caso, definimos o predicado

n(n + 1) 9

Pn):=“l14+24+3+...4+n= 5

A afirmagao P(1) equivale a proposicao logica “ 1 = 1.2/2” que é claramente vélida. Para
fixar notagao, observe que a proposi¢do P(2) equivale a proposigao légica “ 142 = 2.3/2”,
P(3) coincide com “ 14243 = 3.4/2”, e assim sucessivamente.

Vamos ao segundo passo. Seja k um natural fixado. Desta forma, P(k) comporta-se como
proposigao. Admitimos que P(k) é verdadeiro, ou seja, vale a igualdade

(k41
1+2+3+...+k:k(k2+). (7.1)

Precisamos provar que P(k + 1) é verdadeiro, ou seja,

1+2+...+k+(k+1):(“1)'((’;“)“). (7.2)

Como sair da equagao (7.1) e chegar a equagao (7.2)7 Para usar o PIF, o ponto crucial esta
em responder esta questao. Um andlise entre os primeiros membros das equagdes acima ja
fornece a dica: a diferenca entre tais membros é o fator aditivo k + 1. Adicionando k+ 1 em
ambos os membros de (7.1), obtemos

k.(k + 1)

L2+ btk +1) = =

+(k+1). (7.3)
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Ainda nao chegamos a (7.2). Um simples manipulagao algébrica mostra que k.(k + 1)/2 +
(k+1) = (k+1).(k+2)/2, implicando em (7.2) através de (7.3). O resultado segue pelo PIF. O

Muitos livros nao explicitam o predicado. Optamos por uma prova detalhada para realcar
as nocgoes logicas.

Proposicao 7.3. Para todo natural n, n®> > 2n — 1.

Demonstragao: Definimos o predicado P(n) := “n? > 2n —1”. Como “1 > 2.1 — 17, P(1)
é V. Vamos ao passo indutivo. Fixado k > 1, suponha que P(k) é verdadeiro, ou seja,
k% > 2k — 1. Queremos provar que P(k + 1) é verdadeiro, ou seja, (k+1)2 > 2(k +1) — 1,
ou equivalentemente,

(k+1)2> 2k + 1. (7.4)

O desenvolvimemto de (k + 1)? = k2 + 2k + 1 apresenta o fator k2. J4 podemos acionar a
hipéteste indutiva k? > 2k — 1. Logo

(k+1)2>(2k—1)+2k+1 (7.5)

Como obter a desigualdade (7.4) usando (7.5)7 A diferenca estd no termo (2k —1). Como
(2k — 1) > 0, para todo k, obtemos (7.4). A assercao fica provada pelo PIF. O

Proposigao 7.4. Consideremos agora um caso da férmula da progressao geométrica. Para

todo natural positivo n,
3n+1 -1
1+31+32+...+3":T

Demonstragao: Vamos aplicar o PIF. Para evitar confusao nos indices, convém definir o
predicado associado:

3l —1
P(n) := “1+3+32+...+3":T

A afirmacido P(1) equivale a proposicao légica “ 1 + 3 = (32 — 1)/2”, que é claramente
verdadeira.

Para fixar notagao, observe que a proposicao P(2) equivale a proposicao 16gica “ 14+3+9 =
(32 —1)/2".

Vamos ao segundo passo. Fixado k, P(k) comporta-se como proposi¢ao. Admitimos que
P(k) é verdadeiro, ou seja, vale a igualdade

3k+1 -1
143+3% 4. +3F="— = (7.6)
2
Queremos provar que P(k + 1) é verdadeiro, ou seja, a igualdade
3(k:+1)+1 -1
1+3+32+...+3k+1:f (7.7)

19



Como obter a equagao (7.7) usando a equacao (7.6)7 Podemos iniciar com o lado esquerdo
de (7.7). Notemos que

1+3+32 4. 43" =[1+34+3%4... +3K 4301

O passo crucial é perceber que a parte em negrito ja esta calculada, conforme (7.6), cuja
soma é (3Ft1 —1)/2. Desta forma,
3k+1 -1

14+3+3% 4. 43kt = 5

+ gkt (7.8)

A computagao do lado direto fica:

3k+1 -1 el 3k‘+1 — 14+ 2'3k+1 B 3k+2 -1
3 = 5 == (7.9)

Combinando as equagoes (7.8) e (7.9), obtemos (7.7). O resultado segue pelo PIF. O

8 Conexoes entre légica e teoria dos conjuntos.

Vamos interpretar o argumento “todos os ganhadores do prémio Nobel sdo criativos, Sara-
mago? ganhou este prémio; logo, Saramago é criativo” na 6ptica da teoria dos conjuntos.
Seja U o universo das pessoas e os predicados A ser prémio Nobel, B ser criativo. Defina
o conjunto dos prémios Nobel A={ z € U / A(x)} e o das pessoas criativas B= { z € U
/ B(z)}. Observe agora que o argumento acima:Vz [A(z) — B(x)] e A(s) logo B(s) , onde s
denota Saramago tem o mesmo significado de: A C Be s € A, logo s € B.

Dado um predicado A, selecionar todos os sujeitos x do universo U tais que satisfagam
a setenca A(x) induz a “criagdo ” de um conjunto A ={ x € U / A(z) é verdadeiro}, ou
simplesmente A ={ z € U / A(z)}. Note que A(z) representa a clausula para a escolha de x.

Certamente A é subconjunto de Y. Mais ainda, A = U se A(x) é satisfeita para todo
x, ou seja VrA(x) é verdadeira. Por outro lado, A = () quando sempre falha A(z),ou seja
drA(z) é falso. Assim, acabamos de verificar as relacoes :

Proposicao 8.1. Em wvista das notagcoes acima, temos as equivaléncias:

(1) A=U VzrA(x) éV
(2) A=0 3FzAx) éF

As “coincidéncias” nao param por ai. Vamos aprofundar a ligacao entre légica e conjuntos.
Vimos operagoes logicas e também operacoes sobre conjuntos. Elencamos abaixo uma lista
de algumas conexoes. Para os nossos propositos, além de A, inclua os predicados B e C e
seus respectivos conjuntos induzidos: B={x €U / B(z)} eC={z el / C(x)}. O simbolo
s denota um sujeito particular de U.

2Saramago: escritor portugueés.
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Proposicao 8.2. Sdo vdlidas as conexdes:

(3) s € A°(complementar de A) A(s) € F

(4) se AUB A(s)V B(s) €V

(5) se ANB A(s) NB(s) € V

(6) ACB Va [A(z) — B(z)]

(7) A C B se e somente se B°C A° Vz[A(x) — B(x)] = Va [~ B(z) =~ A(z)]

Muitas outra conexoes podem ser obtidas , por exemplo a transitividade de C é traduzido
para a transitividade da implicacao em predicados, ou seja, “se A C B e B C C entao A CC
7 é equivalente a “se Vz [A(z) — B(x)] e Y [B(z) — C(x)]entao Va [A(z) — B(x)] ”.

Resutagos da teoria dos conjuntos podem ser obtidos através de aplicacoes da inferéncias
logicas.

Exemplo 8.3. O resultado “se s € AUBe s ¢ Bentao s € A” é uma simples consequéncia
do silogismo disjuntivo: “ se A(s)V B(s) e ~ B(s) logo A(s).

Em outras situacoes, o uso de conjuntos facilita o entendimento de alguns enunciados
légicos:

Exemplo 8.4. Vamos verificar se é sempre valida a implicacao:
[(3zA(x)) A (3zB(z))] — Jz [A(x) A B(z)]
Pelas linhas (2) e (5), este resultado é equivalente a
se A #D e B #( entao AN B #£)

Tome, por exemplo, A o conjunto dos niimeros pares e B os impares. Entao o resultado
acima nao se verifica e, por consequéncia, a implicacao também nao.

As veses, fica mais facil interpretar os argumentos através de resultados ja conhecidos da
teoria dos conjuntos. Talvez o exemplo abaixo convenca o leitor.

Exemplo 8.5. Dadas as premissas: “(1) minhas panelas sdo as unicas coisas feitas de lata
que possuo 7, “(2) acho todos seu presentes muito uteis 7, “(3) Nenhuma das minhas panelas
tem a menor utilidade ”. Encontre uma conclusao. Resolu¢do: Seja U o conjunto de todas as
coisas que possuo, A o conjunto das feitas de lata, B minhas panelas, C minhas coisas tteis e
D as que foram presentes seus. Entao (1),(2),(3) se traduzem como A=B, DC C,BNC = .
Mas BN D C BNC , pois DC C. Assim BN D = () e portanto AN D = (), ou seja, “nenhum
dos presentes que vocé me deu é feito de lata. ”
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