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1 Introducao

Nestas notas apresentamos alguns tépicos de Légica, tendo em vista as disciplinas Funda-
mentos de Matemética (curso de Matemética) e Matematica Discreta (cursos de Ciéncias da
Computagao e Informdtica). Como as disciplinas acima sao ofertadas aos calouros, optamos
por uma abordagem informal e introdutoria, e portanto nao ha pré-requisito formal para a
leitura. A apostila nao enfatiza aplicactes, simplesmente expoe nocoes da teoria para que o
aluno possa utilizéd-las em outras disciplinas no decorrer do seu curso.

Em particular, algumas tarefas sdo imprescindiveis aos estudantes de matemdtica e a
ciéncia da computagao:
e uso correto de conectivos lgicos (quase todos os dias pessoas geram ambiguidades de
comunicagao devido ao uso incorreto de “ou”, “todos ”, inclusive em algoritmos).
e discernir argumentos validos e também verificar se as conclusoes obtidas sao realmente
validas.
e aprender as principais técnicas de demonstracao em matematica.

Algumas relacoes superficiais entre Loégica e outras disciplinas sdo comentadas de tal
modo que a omissao da leitura nestes pontos nao acarretard prejuizo no entendimento. Elas
sao marcadas por (*). Por outro lado, os exemplos envolvendo propriedades mateméaticas
e notacoes légicas tentam elucidar conceitos importante da Légica, e recomendamos aos
académicos uma leitura atenta nestes pontos.

Comentaremos brevemente algumas aplicagoes da Légica na Computacao.

Nao é raro algoritmo apresentar erros de sintaxe e légicos. A compilacdo pode detectar
erros do primeiro tipo, mas nao impede que ainda persistam erros légicos, os quais geram
gasto de tempo de recursos humanos (custos) na busca das falhas. Nao é dificil inferir a grande
utilidade de um algoritmo que realize a seguinte tarefa: decidir se um determinado programa
entra em “loop infinito” ou nao. No entanto, é impossivel construir tal algoritmo. Este
resultado implica que ha limites reais na teoria da computacao. Resultados desta natureza
sao encontrados em Computabilidade, uma area entre a Computacao e Logica.

O mecanismo de funcionamento dos circuitos eletronicos encontrados nos computadores
("hardware”) é regida pela Légica de Boole. Quando Boole concebeu esta teoria, ele acredi-
tava equivocadamente que ela serviria apenas a fins estritamente tedricos.

Computabilidade, Inteligéncia Artificial, Redes Neurais, Hardware, ou mesmo desenvol-
vimento de algoritmos, sao dreas de pesquisa em Computacao que utilizam recursos légicos
em grau variado de complexidade.

Um dos objetivos é propiciar subsidios tedricos de légica para que o acedémico possa usa-
los como ferramenta de trabalho, por exemplo: evitar (e se for o caso, reconhecer mais rapi-
damente) erros usuais cometidos em programagcao ou mesmo em demonstragoes mateméaticas.
De fato, a tradugao adequada de conceitos matematicos em linguagem légica facita o enten-
dimento de muitas demonstracoes e propriedades.
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foi feita gracas a sua colaboragao), Matofu, Joao Geronimo, pelo incentivo. Agradego & prof.



Irene Nakaoka, pelo estimulo e comentarios. Aos académicos da matematica, ciéncais da
computacgao, informdtica, que apontaram intmeros erros nas versoes prévias; e a Bruno
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2  Proposicoes

A cléssica Logica Proposicional estuda relacoes logicas entre objetos chamados proposicoes,
os quais podem usualmente (nem sempre) ser interpretadas como sentengas da Lingua Por-
tuguesa.

Por sua vez, sentengas podem ser de vérios tipos: declarativas (afirmacgoes), interroga-
tivas, modais (por exemplo, “parece que o carro do Zé é vermelho”), performdticas (ou de
comandos) (por exemplo, o termo “ go to” do Pascal.)

Vamos nos preocupar aqui apenas com as sentencas declarativas, simplesmente porque
estas sao suficientes para o estudo da Matematica.

A principio, podemos ter a impressao de que toda sentenca declarativa é falsa ou verda-
deira. Vamos analisar a frase seguinte:

“Esta sentenca é falsa”.

Se ela é verdadeira, o contetdo da frase se cumpre, ou seja, ela é falsal. Resta o caso dela
ser falsa, assim o seu conteido “Esta sentenca ¢é falsa ” falha, ou seja, ela é verdadeira! Esta
“ingénua ” sentenca é conhecido como o paradoxo de Eubulides de Mileto.

Para evitarmos situagoes deste tipo, vamos considerar apenas sentencas declarativas
“bem-comportadas”.

Definigao 2.1. Proposi¢cdo ¢é uma sentenga declarativa que é verdadeira ou falsa, mas nao
ambas.

Uma proposi¢ao assume apenas um dos valores: verdadeira (V) ou falsa (F). Assim,
adotaremos dois principios :

Principio de nao contradigao: Uma proposi¢ao nao pode ser verdadeira e falsa ao mesmo
tempo

Principio do terceiro excluido: Toda proposicao é verdadeira ou falsa, ndo ha terceira
possibilidade.

Exemplo 2.2. Vejamos alguns exemplos de proposicoes:

a) A lua é feita de queijo.

)
c) 3+3 = 6.

(

(b) 4 é um ndmero primo.

(

(d) 4 é niimero positivo e 3 é par.



(e) Choveu no Brasil em 12 de abril de 1523.
(f) 4 é nimero positivo ou 3 é par.

(g) A Terra gira em torno do Sol.

As afirmagoes (a), (b), (d) sdo proposigoes falsas, enquanto (c), (f), (g) sao verdadeiras.
Embora (e) seja uma proposi¢ao, pois esta sentenga é verdadeira ou nao, nao temos como
determinar seu valor-verdade.

Exemplo 2.3. As seguintes sentencgas nao sao proposigoes: (a) x=3, (b) Vocé estd bem ?,
(c) V4 embora !

O primeiro item representa uma sentenca declarativa mas nao uma proposi¢ao, pois seu
valor-verdade depende do valor atribuiido a x (estudaremos tais sentencas no calculo de
predicados). Os casos restantes nem sao declaragoes.

Adotaremos letras maitisculas para representacao de proposicoes, em geral P, Q, R, S,...
Por exemplo, podemos denotar por P a proposicao “4 é nimero positivo”, ou simplesmente,
P:“4 >0 ouP :=“ >0". Caso nao seja especificado, P representard uma proposicao
qualquer.

3 Conectivos Loégicos

Proposicoes podem ser combinadas coerentemente através de conectivos logicos, gerando
sentencas mais ricas. Alguns dos conectivos que estudaremos sdo: negacao ~, conjuncao
logica A, disjuncao légica V. Nas formas P A @, PV @, P, sao chamados operandos e os
conectivos V, A, sao chamados operadores légicos .

Operadores  logicos ou conectivos légicos efetuam  operagoes sobre as
proposicoes do mesmo modo que adicao é um operagao sobre os niimeros, ou que a intersecao
¢é operacao sobre os conjuntos. Quando um operador 16gico é usado para construir uma nova
proposicao, seu valor-verdade depende da natureza dos operadores légicos usados e do valor-
verdade das proposicoes originalmente dadas. Discutiremos agora como os operadores logicos
afetam o valor-verdade das proposigoes. Veremos que os significados dos operadores 16gicos
nem sempre coincidem com aqueles usados na nossa lingua.

3.1 O operador negagao: ~

Denotando por P: “4 é positivo”, a proposicao ~ P pode ser interpretada por: “nao é o caso
de 4 ser positivo”, ou ainda, “nao é verdade que 4 é positivo”, ou em linguaguem matemadtica,
“4 < 0”. Sabemos que P ¢é verdadeira e também que a sua negacao, ~ P, é falsa. Para o caso
geral, quando P representa uma proposi¢ao qualquer, o valor de ~ P assume valor diferente
de P. Este fato pode ser representado através da seguinte tabela-verdade:

P|~P
V| F
F| V




3.2 O operador conjuncao: A

Representa intuitivamente o papel analogo ao conectivo “e” da Lingua Portuguesa. O item
(d) do exemplo 2 pode ser representado por P A Q, onde P : “4 > 0" e Q : “3 é par”. Neste
caso, sabemos que P A @ é falsa, pois falha a proposicao ). Em analogia ao conectivo “e”,
para o caso geral, P A @ serd verdadeiro desde que ambas as componentes P e ) sejam

verdadeiras. O valor-verdade de P A () segue a tabela:

PAQ

|| < <~
| < | <O
| | | <

3.3 O operador disjuncao: V

Funciona como o conectivo “ou”. Considerando as mesmas proposi¢oes acima, a proposicao
PV @ simboliza o item f do Exemplo 1, cujo valor-verdade é determinado pelo de P, pois
Q@ falha. No caso geral, para PV () ser verdadeira basta que tenhamos pelo menos uma das
componentes valida. O valor-verdade de PV @) segue a tabela:

PlQ|PVQ
V|V v
V| F v
F |V A%
F|F F

Observagao 3.1. Em algumas situagoes cotidianas, o “ou” da Lingua portuguesa funciona
com sentido de “ou exclusivo”, cujo significado difere do usado aqui. Um exemplo do “ou
exclusivo” segue. Num supermercado, a mae diz: “Filho, escolha sorvete ou chocolate.” Esta
dificil decisao imposta ao garoto acontece (é verdadeira) desde que escolha uma e apenas uma
das opcoes. “ Zé é paulista ou paranaense” exemplifica outra situacao do ou exclusivo.

Para o nosso propésito, PV (Q é verdadeiro também quando ambas as proposigoes originais
0 830
3.4 O operador condicional: —

Notagao: P — Q (P: antecedente ou hipétese, Q: consequente ou conclusao).

Tlustremos inicialmente uma interpretacao do conectivo — através da sentenca
“Se Gustavo ganhar na préxima loteria, pagara churrasco.”

Definindo-se P: “Gustavo ganha na proxima loteria” e Q:“Gustavo paga churrasco”,
P — @ representa a promessa de Gustavo.



Vamos analisar quando a promessa serd cumprida. Primeiro caso : digamos que ele ganhe
(P é V). Pode acontecer de ele pagar o churrasco (@ é V), cumprindo a promessa (P — Q
é V). Por outro lado, Gustavo pode nao paga-lo, descumprindo a promessa (P — @ é F).
Segundo caso: digamos que Gustavo nao ganhe (P é F). Neste caso, independente de pagar
ou nao um churrasco, (Q é V ou F), a promessa nao foi descumprida (P — @ é V). Observe
que a unica possibilidade de P — @ ser falsa é quando P é V e Q é F . NGs esperamos
que tal operacao funcione de maneira similar ao modelo acima, desta forma, quando P e @)
assumirem proposigoes arbitrarias, P — () serd regida pela tabela seguinte:

P|Q|P—Q
V|V A%
V| F F
F|V A%
F|F A\

A proposicao P — @) pode ser lida de varios modos: “se P, entao Q”; “P é suficiente para )”;
“@Q é necessario para P”; “Q se P 7; “Q) segue de P 7; “ () desde que P ”; “Q) é consequéncia
de P7.

Na lingua portuguesa, o uso do condicional estabece uma relacao de causa e efeito, ou
relacdo de “heranca” entre a hipdtese e a conclusao. Assim, “se eu cair no lago, ficarei
molhado” relaciona uma causa a seu efeito. O condicional “se eu sou homem, entao sou
mortal” caracteriza uma propriedade intrinsica a raga humana.

Entretanto, no condicional 1égica P — (@), a hipdtese P nao precisa estar relacionada a
conclusao (). Isto pode causar alguma estranheza e confusao. Por exemplo, se P:=“laranjas
sao pretas” e Q:=“a Terra é plana”, P — () representa a sentenca ”se laranjas sao pretas,
entao a Terra é plana”, que é destituido de “sentido” na Lingua Portuguesa. Como P é falso,
pela tabela verdade, P — @ é verdadeira, mesmo nao existindo alguma relacao de causa e
efeito entre as proposicoes envolvidas .

3.5 O operador bicondicional :

E definido pela composicao de operacoes: (P — Q)N (Q — P). A sua tabela fica:

P|Q|P+Q
VIV A%
VI|F F
F |V F
F|F A%

Note que P < @) vale quando P e Q possuem mesmo valor.

Algumas leituras mais usuais de P <> @) sao: “P é causa e consequéncia de @ 7; “P é
condicao necessaria e sufiente para ) ”; “P se e somente se ().

Exemplo 3.2. Retornemos ao caso ja visto: P:“Gustavo ganha na proxima loteria” e



Q:“paga churrasco”. Colocamos abaixo algumas férmulas com respectivo sentido:

2

P — Q: “Se Gustavo ganhar na préxima loteria, pagara um churrasco.
@ — P: “Se Gustavo pagar churrasco, entao ele ganhou na loteria. ”
P < Q: “Gustavo pagara um churrasco se e apenas se ganhar na loteria.”

As trés sentencas sao todos distintas e para elucidar melhor as diferencas, vamos consideré-las
validas, caso a caso. A primeira sentenca, a promessa, inclui a possibilidade dele nao ganhar
na loteria, mas pagar o churrasco com outro recurso. No entanto, a segunda sentenca, QQ — P,
nao permite tal possibilidade. Ela continua vélida se ele ndo pagar churrasco e ganhar na
loteria. Mas a terceira nao permite tal possibilidade.

Exemplo 3.3. Outra ilustracao de P > Q: considere T um tridangulo fixado de lados
a > b > c e defina P:“T é triangulo retangulo” e Q: “a® = b%> + ¢ 7. O classico Teorema de
Pitdgoras com sua reciproca afirma que “T é tridngulo retangulo se e somente se a? = b%+c?”,
ou ainda, P < () acontece.

4 Tabelas-verdade

Um fato de importancia fundamental: o valor-verdade de proposicoes compostas obtidas
via combinacao de conectivos fica completamente determinado pelos valores das proposigoés
componentes e pela natureza dos conectivos envolvidos.

Exemplo 4.1. Vamos construir a tabela verdade da férmula (PV ~ Q) — @Q.Iniciamos
exibindo as colunas de P e Q. Observe que ha quatro linhas de valores, pois ha 4 possibilidades
de combinar os valores de P e (). Na segunda etapa, construimos a coluna relativa a ~ ). Em
seguida, a etapa 3 combina os valores das colunas de P e da coluna ~ () usando o conectivo
V. Finalmente, a tltima coluna construida serd combinada com a coluna () via andlise do
condicional. A tabela abaixo esquematiza os nossos raciocinios:

PIQ[~Q[PV~Q|(PV~Q) > Q
VIV F A A
VI|F A A F
F |V F F Vv
F|F Vv A\ F
11 2 3 4

onde a ultima linha denota as estapas da construcao. Em particular, quando P e @ sao
verdadeiras, entao a férmula acima é V (primeira linha); e quando P é Ve @ é F, entdo a
proposicao é F; e assim em diante.

Exemplo 4.2. Vamos determinar a tabela-verdade de S := (PAQ)V ~ (P — Q). Na forma



de tabela

PIQ[(P=>Q) [~P=Q [PAQ]S
VIV Vv F A% Vv
V| F F A F A
F |V Vv F F F
F|F Vv F F F
1|1 2 3 3 4

Os valores-verdade da coluna S na etapa 5 é determinado segundo as colunas de ~(P— Q)
e de (PAQ) através da andlise da tabela do V.

Exemplo 4.3. A tabela-verdade da proposicao R = (PAQ)V (~ (PVQ))

PIQ[PAQ[~(PVQ) R
VIV|V |F v
V|F|F F F
F|V|F F F
F|F |F v v
11 |2 3 4

Observacgao 4.4. Cada proposicao simples (atomica) estd sempre associado a dois valores
auto-excludentes: verdadeiro ou falso. Um argumento combinatério mostra que a tabela
verdade de uma férmula composta por n proposigoes originais (atémicas) possui 2" linhas.
Um proposicio gerada por 10 proposicdes atomicas necessita de 2'° linhas na composicio
de sua tabela verdade. Nao é dificil exibir um método para simular computacionalmente a
construgao de tabelas-verdade. Como o nimero de linhas crece muito rapido, infelizmente
nem sempre ¢ viavel fazer a tabela verdade de um proposicao, mesmo com a ajuda de um
computador.

Para termos uma ideia intuitiva do que estamos dizendo, imaginemos um algoritmo para
executar a tabela-verdade de uma proposicao qualquer. Suponha que um computador seja
capaz de verificar 1 trilhao de linhas por segundo. Se a entrada é uma proposicao formada por
100 proprosices atomicas, o computador demoraria aproximadamente 1,27.1030 segundos,
ou seja, mais de 40 bilhoes de anos!

Notagao: Faremos uso de sinais: ( ); [],{ } para evitar ambiguidades, como por exemplo
em P A @V R, que pode gerar confusao, pois ha duas distintas interpretacoes, a saber:
(PAQ)V R ouainda P A (Q V R). Faga as respectivas tabelas-verdade para verificar a
diferenca.

Para evitar o uso excessivo de sinais, estabelecemos uma convencao de prioridade na
aplicacao dos conectivos. Adotamos os conectivos ~, A, V, — e <> em ordem decrescente de
prioridade. Em outra palavras, o conectivo ~ tem prioridade em relagao aos outros, e ele age
na proposigao a direita mais proxima. Também por convencao, os conectivos A e V possuem
a mesma ordem de prioridade. Por exemplo, PV @ — R serd entendido como (PV @) — R,
enquanto que ~ P A @ representa (~ P) A Q.



5 Tautologias

Lembrando a promessa de Gustavo, P — @, ela assume valor V e F dependendo dos valores
tomados em P e em (). Mas vejamos um caso curioso:

Exemplo 5.1. Analisemos a proposicao [P A (P — Q)] — Q.

Primeiro método: Andlogo ao caso anterior, via construcao da tabela:

(P —=Q) | PA(P—=Q) | [PA(P—=Q) ] — Q.

=< <™ T v
= <| | <=0
| < | <<
w|<| = =™
<<l <<

Segundo método: Para evitarmos a elaboracao da tabela acima, vamos proceder de forma
indireta. Conside, a principio , onde a nossa proposi¢ao poderia receber valor F. Analisando a
tabela do condicional, o tinico caso seria quando: PA(P — Q) for V e @ for F. Analogamente,
para P A (P — @) ser V, terfamos obrigatoriamente que P é Ve P — @ é V. Mas para
P — (@ se cumprir, teriamos:

e ou P é F (contrariando resultado prévio na linha acima).
e ou P éVe@éV (novamente contrariando resultado prévio).

Ou seja, nao hé possibilidade alguma da proposigao ser falsa.

Em contraste com a promessa de Gustavo, a proposi¢ao acima sempre é verdadeira (ver
a coluna do passo 4), independente dos valores de P e Q. Isto motiva a definigao:

Definicao 5.2. Uma tautologia é uma proposicao que assume sempre valor verdade V, inde-
pendente dos valores verdade das proposicoes que a compoe. Por outro lado, uma contradicao
é uma proposicao sempre falsa.

Um economista que disser “a inflagdo sobe ou nao sobe” (PV ~ P) corre o risco de ser
acusado de incompetente, mas nao de mentiroso. Independente do significado atribuido a P,
PV ~ P sempre é tautologia, enquanto que PA ~ P ilustra uma contradicao.

E através das tautologias que podemos simplificar expressoes légicas e criar regras de
inferéncias ( veremos mais tarde este conceito).

Observe que se C é contradigao entdo ~ C' é tautologia. Além disto, se T representa uma
tautologia, entao ~ 71" denota uma contradigao.

5.1 Equivaléncias

Em computacao, dois programas distintos podem executar a mesma tarefa, ambos utilizando
tempos préximos na execucao e mesmo gasto de meméria. Neste caso, é natural dizer que eles
sdo programas equivalentes. A expressdo algébrica (z —1).(z + 1) equivale a 22 — 1. Embora



ambas sejam idénticas numericamente, hd uma diferenca do ponto de vista computacional,
pois a primeira expressao exige 3 operagoes, enquanto que a segunda, apenas duas.

Assim como na dlgebra, seria de grande interesse se pudéssemos simplificar expressoes
l6gicas. Para atingir tal objetivo, definimos o conceito de equivaléncia logica.

Definigao 5.3. Duas proposigoes P e Q sao equivalentes (notagao: P =Q ou P& Q) se P
¢ V quando e apenas quando ) é V. Em outras palavras, P = () se e somente se P<~(Q for
tautologia. Neste caso, dizemos P e ) formam uma identidade légica.

Por exemplo, ~ (~ P) e P sao claramente equivalentes. As férmulas ~ (P V Q) e
(~ P) A (~ Q) ilustram outro exemplo importante de identidade légica.

Exemplo 5.4. P - Q = (~ PV Q). De fato,

PlQ|P—-Q)|~PVQ| (P—Q)+<~PVQ.
F|F A% A% A%
F|V \Y% A% \Y%
V| F F F A%
VIV \Y% \% \%
111 2 2 3

Repare que as colunas 2 coincidem em todas as linhas. Como comentamos, P — QQ =~ PVQ,
pois (P — Q) <>~ PV @ é uma tautologia (ver coluna da etapa 3).

Verifique as seguintes identidades logicas abaixo.

Lista 1 - identidades lé6gicas

identidade nome sigla
1 P=(PVP) idempoténcia de V IDN
2 P=(PAP) idemponténcia de A IDN
3 (PvQ)=(QVP) comutatividade de V COM
4 (PANQ)=(QAP) comutatividade de A COM
5 [(PVQ)VR=[PV(QVR)] associatividade de V ASS
6 [(PAQ)AR]=(PAN(QAR) associatividade de A ASS
7T ~(PANQ)=(~PV~Q) lei de De Morgan DM
8 ~(PVQ)=(~PAN~Q) lei de De Morgan DM
9 [PAQVR]=[(PAQ)V(PAR)] distributiva de A sobre V. DIST
10 [PV(QAR)|=[(PVQ)AN(PVR) distributiva de V sobre A DIST
11 P=~(~P) dupla negagao DN
12 (P—-Q)=(~PVQ) definicao de condicional ~ DC
13 (PQ)=P—->Q N(Q—P) definigao de quivaléncia  DE
14 [(PAQ)— R|=[P—(Q—R) exportacao EX
15 [(P=Q NP —=~Q)=~P absurdo ABS
16 (P —-Q)=(~Q —~P) contrapositiva Cp
17 - Q= (PAN~Q)— C C: contradicdo reducao ao absurdo R

10



Observagao 5.5. Note que = é uma relacao de equivaléncia, ou seja, é reflexiva, simétrica
e transitiva.

Observagao 5.6. A operacao bicondicional foi definida através dos conectivos — e A. Por
sua vez, o condicional (regra 12 acima, Exemplo 5.4) pode ser definida via ~ e V. Pela lei de
De Morgan (ver 7, lista acima), ~ (P A Q) = (~ PV ~ Q). Ora, como elas s@o equivalentes,
suas respectivas negagoes também o sao: ~ (~ (P A Q)) =~ (~ PV ~ Q). Por outro lado,
(regra 11- lista 1), a primeira proposicao é equivalente a PAQ. Por tltimo, pela transitividade
de =, PANQ=~(~ PV ~ Q) Assim, obtemos A a partir de V e ~. Logo, estas duas ultimas
operacoes sao suficientes para construirmos todos os conectivos vistos.

Exemplo 5.7. O seguinte antincio educativo tem aparecido em rede nacional. “O Ministério
da Saide adverte:

F} := Se beber, nao dirija.
F5 := Se dirigir, nao beba.”

O telespectador pode ter a impressao de que recebeu dois conselhos distintos, ja que sao frases
distintas. Do ponto de vista légico, ha apenas uma duplicacao do mesmo conselho. De fato,
intuitivamnte as “proposigoes” P :=“beber” e @ :=“dirigir” simulam as frases da seguinte
forma: F;1 = P —~ Q e Fy, = Q —~ P. Mas tais frases sao equivalentes, pela contrapositiva
e dupla negacao.

As identidades sao usadas para simplificar uma proposicao dada. Por exemplo, vamos
determinar uma férmula equivalente a U = (P A Q) — (~ PV Q) sem usar o conectivo
A. Temos que: P A Q=~(~ PV ~ Q) e também que ~ P A Q=~(~~PV ~ Q) (feitos na
obs. anterior). Substituindo ambas as formas acima em U, obtemos: U=~(~ PV ~ Q) —~
(~~PV ~ Q), e usando regras 3 e 12, U=~(P — Q) —~ (Q — P).

5.2 Implicagoes

Tautologias envolvendo o operador — sao tao importantes que recebem um nome especial.

Definigao 5.8. Dadas duas proposicoes quaisquer P e @), dizemos que “P implica ()7, de-
notado por P = @, quando o condicional P — () for uma tautologia.

Elencamos uma pequena lista de tautologias envolvendo condicionais (implicagoes) e res-
pectivos nomes.

Lista 2: implicagoes

implicacao nome sigla
1 P=(PVQ) adigao AD
2 (PANQ)=P simplificagao SIM
3 [PAN(P—=Q)]=Q modus ponens MP
4 [(P—=>QAN~Q]=~P modus tollens MT
5 [~PA(PVQ)]=Q silogismo disjuntivo  SD
6 [(P—>Q AN(Q—R)]=(P— R) silogismo hipotético SH
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Verificar as tautologias acima.

6 Inferéncia

Em nosso cotidiano estamos acostumados a tirar certas conclusoes, partindo de informagoes
fornecidas. Vejamos duas situacoes

Situagao 1: Quando alguém diz:
“Gustavo ficou molhado porque caiu no lago”,

inferimos mentalmente que essa pessoa nos prestou uma informacao que se traduziria de
modo mais completo nesta forma:

Se Gustavo cair no lago, ficard molhado.
Gustavo caiu no lago.
Gustavo ficou molhado.

Admitimos que as duas informagcdes escritas sobre o trago horizontal sdo verdadeiras: a
primeira, porque a ela nos habituamos através de experiéncias e constatagoes (quem cai num
lago costuma ficar molhado - em condigoes “normais”) a segunda porque a informagao nos
foi explicitamente fornecida (o fendmeno cair no lago aconteceu). Nossa conclusao é legitima
- a conclusao é verdadeira e nao pode deixar de ser verdadeira.

Vejamos de que maneira o raciocinio se apresenta, usando enunciados simbdlicos:

P— Q
P

Q

onde as proposi¢oes P=“Gustavo cai no lago”’e Q =“Gustavo fica molhado. ”"Como P e
@ — @ sao verdadeiros, e lembrando que PA(P— @) = @ é uma tautologia, obtemos que a
nossa conclusao: @) é verdadeira, Nosso raciocinio foi legitimo, nao passamos de informagoes
verdadeiras para conclusoes que poderiam, eventualmente, mostrar-se falsas.

Situacao 2: Vamos alterar os significados (semantica) das proposigdes acima. Retor-
namos a situcao apresentada na defini¢do do condicional, assumimos agora a validade da
promessa P — @) de Gustavo (vamos por um momento considerd-la verdadeira - ele sempre
cumpre as promessas). Até aqui ndo podemos concluir nada. No entanto, se ele ganhar na lo-
teria (P se cumpre), entao agora sim podemos concluir que o churrasco sera realizado (Q é V).

Ambas as situacbes sdo representadas pelo mesmo esquema acima. E plausivel entao
admitirmos que o argumento

P — Qe Pentao Q
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sempre se verifica, independente dos significados atribuidos as proposigoes.

A deducdo pretende assegurar-nos a verdade da conclusao, quando partimos de infor-
macoes verdadeiras. Ela nos da garantias de que a verdade foi preservada.

De um modo geral, aquilo que nos baseamos em raciocinios e inferéncias e assumidos
verdadeiros sao as premissas, o ponto a que chegamos é a conclusdo. A colecdo de sentencas
que “traduzem” o pensamento é o argumento.

Adotaremos uma forma padronizada para escrever os argumentos , colocando as premissas
Ay, Ag, ..., A, (proposigoes que ja sabemos ser verdadeiras, ou nos foi dado, ou simplesmente
assumidas verdadeiras) sobre um trago horizontal e, em seguida, a conclusao A,yi. Assim,
denotaremos o argumento por

Ay
A
Ap
An+1 9

ou ainda na forma concisa
Al;Az, e ,An F An+1

Dado o argumento acima, vamos associa-la ao condicional:
Al/\AQ/\.../\An*)AnJrl
conforme resultado abaixo.
Teorema 6.1. O argumento acima € legitimo se e somente se o condicional associado
(Al/\AQ/\.../\An) —)An+1
€ tautoldgico.

Demonstragao: Se o argumento é legitimo(sempre obtemos verdades), entao impede que
as premissas sejam V e a conclusao F de modo que o condicional associado sempre assume
valor V, gerando uma tautologia. Reciprocamente, sendo o condicional acima tautolégico, é
facil verificar que o argumento é legitimo. O

Uma lista de argumentos legitimos, que nos ajudam a obter conclusoes, ja foi elencada na
lista de tautologias, que passamos a chama-las regras de inferéncia (ver Lista 2). Destacamos
abaixo alguns delas.
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Lista 3 - Principais Regras de inferéncias:

P PAQ

(PV Q) adigio - AD Q simplificagdo - SIM
P—-qQ P—=Q

Qi modus ponens - MP % modus tollens - MT
PVvQ) P—Q

~ P silogismo disjuntivo - SD @ — R silogismo hipotético - SH
Q P—R

Exemplo 6.2. Verifique o argumento: “Se 4 nao é par, entao 5 nao é primo.” “O ntmero 5
é primo”. Logo, “4 é par”.

Chamando, P :=“4 é par” e Q := “5 é primo”. O argumento equivale ao formato

1. ~P—>~Q

2. Q
P

Um aplicagao da regra Modus Tollens (MT) justifica a conclusao.

Exemplo 6.3. Condire as premissas: “Se o dia estiver quente, irei nadar ”. “Se eu for

nadar, nao estudarei ” Logo, podemos concluir que :“Se o dia estiver quente, nao estudarei.”
Aqui usamos a regra 6 (silogismo hipoético), onde P, e R denotam respectivamente as
sentencas: “ o dia estda quente ”; “eu vou nadar ”, “ ndo vou estudar 7. Note que a conclusao
P — R é uma sentenca condicional. Se incluirmos a premissa P, através de MP obtemos a
conclusao R. Todo o argumento pode ser esquematizado abaixo:

1 P— (@ premissal

2 ( — R premissa 2

3 P premissa 3(adiciona na segunda parte)

4 P — R primeira conclusdo (linhas 1, 2, SH)

5 R conclusao da segunda parte (linhas 3, 4, MP)

Observe que a primeira conclusao (linha 4) foi usada como premissa, pois ja faz parte do
nosso repertorio de informagoes validas.

Observagao 6.4. Note que o significado atribuido a cada proposicao é irrelevante para a
conclusao. Em outras palavras, sempre que tivermos as 3 premissas anteriores, poderemos
concluir a validades de R.

Tlustremos uma aplicacao do calculo proposicional.
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Exemplo 6.5. Imagine Flavio, um quimico, na seguinte experiéncia e constatou os fatos:
- Flavio notou que o papel de tornasol ficou vermelho ao ser posto em acido.
- Verificou que ficou azul ao ser posto em solucao alcalina.

- Agora, Flavio esta colocando o papel em solucao alcalina ou 4cida.

- Ele observou que o papel nao ficou azul.
- Concluiu que o papel ficou vermelho.

O argumento pode ser colocado na forma:
A—=V:B—>Z;AVB,~ZFV

onde : A: acido, B: base, V: vermelho, Z: azul. As premissas sao verdadeiras, pois sao fatos
da experiéncia. Podemos enumeré-las

1. A=V Premissa
2. B—Z Premissa
3. AV B Premissa
4. ~ 7 . Premissa

Aplicamos Modus Tollens ( MT) nas linhas 2. e 3. e obtemos a conclusao exibida na linha 5.
5 ~ B (3,2, MT.)

deixando explicito entre parénteses as premissas (linha 2 e 3) usadas e a regra de inferéncia
em questao (no caso, MT.). Portanto a conclusao da linha 5 é verdadeira e podemos usé-la
agora como uma nova premissa. Agora, usando silogismo disjuntivo ( SD) nas linhas 4 e 5,
obtemos a conclusao:

6 A (4,5,8D.)

Finalmente, usando Modus Ponens nas linhas 1 e 6, chegamos a conclusao desejada:
7 Vv (1,6, MP.)

ou seja, realmente estd certa a conjectura de Flavio.

Exemplo 6.6. Vamos analisar o argumento:“ Se estudo ou se eu sou um génio, entao eu
passarei nesta disciplina. Se eu passar nesta disciplina, entao estarei automaticamente inscrito
na proxima disciplina. Portanto, se eu nao estiver inscrito na proxima disciplina, eu nao sou
um génio.”

13

Tomando-se: S: “ eu estudo ” ; G: “ eu sou génio ” ; P: “ eu passarei no curso 7; A: “ eu

estarei inscrito no préximo curso ”, o argumento fica:
(SVG) = P;P 5 AF~ A —>~ G
Vamos verificar o argumento, como no exemplo anterior.

1. (SVGE) - P Premissa
2. P—A Premissa

15



Inicialmente incluiremos uma premissa (linha 3) que ja faz parte do nosso conhecimento, e o
argumento segue:

3. G — (GVS) adicao ( regra)

4. G—(SvQG) 3. comutatividade

D. G—P 4,1 silogismo hipotético
6. G— A 5,2 silogismo hipotético
7. ~A—~G 6 contra-positiva

portanto, o argumento é legitimo.

Como ilustrado nos exemplos acima, cabe ressaltar que inferéncias conseguem modelar
muitas decisoes tomadas em nosso cotidiano.

Por que seguir este procediemnto “complicado”? O Teorema 6.1 afirma que basta fa-
zer uma tabela-verdade para verificar ou nao se um argumento é legitimo. Infelizmente a
verificagao por tabela verdade é um processo computacional invidvel, de acordo com a Ob-
servacao 4.4. Na pratica, a validade de um argumento é verificado conforme método acima
através de um pequena lista de identidades légicas e uma pequena lista de implicagoes.

Definigao 6.7. Fuldcias ou sofismas sao argumentos que resultam de inferéncias incorretas.

Exemplo 6.8. Considere o raciocinio:

“Se o réu é culpado, ele ficard nervoso quando interrogado
O réu estava muito nervoso quando foi interrogado
Portanto, o réu é culpado.”

cuja representaca na forma légica é
P—->Q@,QFP

Tal argumento nao é correto porque a conclusao P pode ser falsa, embora P — @ e () sejam
vélidos, basta verificar que condicional associado [(P — Q) A Q] — P nao é tautologia,
caracterizando uma faldcia.

Exemplo 6.9. Vejamos outro exemplo de sofisma:
“Se o réu tinha as maos cobertas de sangue, entao ele é o assassino
As mados do réu estavam limpas.

Portanto, o réu é inocente.”

Este argumento ignora a esperteza do criminoso, que lava as maos imediatamente apods
cometer um crime.
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7 Meétodos de inferéncia

Estamos interessados em apresentar as principais técnicas de inferéncia nesta secao. Consi-
deremos o argumento
Ay, Aoy AR E A (7.1)

formado por n hipéteses e a tese A,+1. Os métodos mais usadas para legitimar tal argumento
sao descritos abaixo.

7.1 Demonstracao direta

A demonstragao direta consiste em uma sequéncia que combina inferéncias (baseadas nas
regras de inferéncia), e possivelmente equivaléncias légicas sobre as hipdteses Ay, As, ..., A,
até chegar na tese A,41.

Todas as inferéncias vistas na Segao 6 utilizam o método direto.

7.2 Demonstracao condicional ou direta-condicional

Apesar da versatilidade do método direto, nem sempre é ficil inferir a tese. Aqui o método
pode facilitar a prova quando a tese é um condicional, digamos 4,11 = P — @. O argumento
fica

Al,AQ,...,AnFP—)Q (72)

O método condicional consiste em adicionar a proposi¢ao P como hipédtese, e simplesmente
provar (). Esquematicamente, provamos o argumento

Ay, Ag, ... Ay PF Q. (7.3)

A explicagao segue. O argumento em (7.2) é legitimo se, e somente se, o “condicional
associado”
(AL NAaN...NA,) = (P — Q)

¢é tautologico, pelo Teorema 6.1. Novamente pelo Teorema 6.1, o “condicional associado” ao
argumento (7.3) é
(A i NAsN...NALAP) = Q

Queremos provar a equivaléncia destes condicionais. Se a proposi¢ao P é F, entdao automati-
camente os dois condicionais associados sao V. O caso crucial vem agora: se a proposicao P
é V (neste caso, P pode ser considerada um hipétese - a hipdtese adicionada em (7.3)). Uma
simples andlise mostra que P — @ serd V se, e somente se, a proposigao @ for V (a nova tese
no argumento (7.3)). Os condicionais associados sdo equivalentes, donde o argumento (7.2)
é legitimo se, e somente se, o argumento (7.3) é legitimo.

Exemplo 7.1. Demonstrar a validade do argumento
(PVQ)AR
(~P) =@
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Pelo método condicional, o argumento transforma-se em

1. (PVQ)AR
2. ~P
Q

cuja prova segue
3. Pv@ (1, SIM)
4. Q (2,3, MP)

7.3 Demonstracao pela contrapositiva

Este método também pode ser aplicado quando a tese é um condicional, digamos A,+1 =
P — Q. O argumento fica
Al,Ag,...,Anl—P—)Q (74)

O método por contrapositiva consiste em adicionar a proposicao ~ ) como hipdtese, e
simplesmente provar ~ P. Em outras palavras, provamos o argumento

A1, Ag, o Apy~ QF~ P (7.5)

A explicagao segue. A proposicdo P — @ é V se e somente se ~ Q) =~ P é V, pela regra
contrapositiva (dai o nome). Aplicamos agora o método condicional sobre a tese ~ Q —~ P
para obtermos o argumento (7.5).

Exemplo 7.2. Retornemos ao argumento apresentado no Exemplo 7.1. A inferéncia por
contrapositica corresponde a:

1. (PVQ)AR
2. ~Q
~~ P.

Uma inferéncia viavel é

3. PvQ (1,SIM)
4 P (2,3, SD).

7.4 Demonstracao por contradicao ou indireta

O método por contradi¢do ou indireto consiste em assumir que a tese é falsa (adicionando a
hip6tese ~ A, +1) e obter como conclusao uma contradigao C, geralmente do tipo PA ~ P.
Esquematicamente, provamos

Ay, Aoy A~ App E C (7.6)
Vamos tentar justificar. Pelo Teorema 6.1, o “condicional associado” ao argumento é

(Al/\AQ/\.../\An>—>An+1
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O ponto principal da justificativa: A, 11 =~ (A,4+1) — C, onde C denota uma contradigao.
Com a substituigdo acima, a tese passa a ser um condicional. Aplicando o método condicional
sobre esta nova tese ~ (A,+1) — C, o argumento equivalente fica

(Ap NAa N NAAN ~ Apyr) —» C
Exemplo 7.3. Ilustramos como fica a prova por contradigao do Exemplo 7.1. Basta legitimar

1 (PVQ)AR
2 ~(~P—Q)

C
Uma inferéncia do argumeto acima é
3. PvQ (1, SIM)
4. ~(PVQ) (2,DC)
5. C (3,4)
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