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1 Introdução

Nestas notas apresentamos alguns tópicos de Lógica, tendo em vista as disciplinas Funda-
mentos de Matemática (curso de Matemática) e Matemática Discreta (cursos de Ciências da
Computação e Informática). Como as disciplinas acima são ofertadas aos calouros, optamos
por uma abordagem informal e introdutória, e portanto não há pré-requisito formal para a
leitura. A apostila não enfatiza aplicações, simplesmente expõe noções da teoria para que o
aluno possa utilizá-las em outras disciplinas no decorrer do seu curso.

Em particular, algumas tarefas são imprescind́ıveis aos estudantes de matemática e a
ciência da computação:

• uso correto de conectivos lógicos (quase todos os dias pessoas geram ambiguidades de
comunicação devido ao uso incorreto de “ou”, “todos ”, inclusive em algoritmos).

• discernir argumentos válidos e também verificar se as conclusões obtidas são realmente
válidas.

• aprender as principais técnicas de demonstração em matemática.

Algumas relações superficiais entre Lógica e outras disciplinas são comentadas de tal
modo que a omissão da leitura nestes pontos não acarretará prejúızo no entendimento. Elas
são marcadas por (*). Por outro lado, os exemplos envolvendo propriedades matemáticas
e notações lógicas tentam elucidar conceitos importante da Lógica, e recomendamos aos
acadẽmicos uma leitura atenta nestes pontos.

Comentaremos brevemente algumas aplicações da Lógica na Computação.

Não é raro algoritmo apresentar erros de sintaxe e lógicos. A compilação pode detectar
erros do primeiro tipo, mas não impede que ainda persistam erros lógicos, os quais geram
gasto de tempo de recursos humanos (custos) na busca das falhas. Não é dif́ıcil inferir a grande
utilidade de um algoritmo que realize a seguinte tarefa: decidir se um determinado programa
entra em “loop infinito” ou não. No entanto, é imposśıvel construir tal algoritmo. Este
resultado implica que há limites reais na teoria da computação. Resultados desta natureza
são encontrados em Computabilidade, uma área entre a Computação e Lógica.

O mecanismo de funcionamento dos circuitos eletrônicos encontrados nos computadores
(”hardware”) é regida pela Lógica de Boole. Quando Boole concebeu esta teoria, ele acredi-
tava equivocadamente que ela serviria apenas a fins estritamente teóricos.

Computabilidade, Inteligência Artificial, Redes Neurais, Hardware, ou mesmo desenvol-
vimento de algoritmos, são áreas de pesquisa em Computação que utilizam recursos lógicos
em grau variado de complexidade.

Um dos objetivos é propiciar subśıdios teóricos de lógica para que o acedêmico possa usá-
los como ferramenta de trabalho, por exemplo: evitar (e se for o caso, reconhecer mais rapi-
damente) erros usuais cometidos em programação ou mesmo em demonstrações matemáticas.
De fato, a tradução adequada de conceitos matemáticos em linguagem lógica facita o enten-
dimento de muitas demonstrações e propriedades.

Agradecimentos: Aos professores Doherty Andrade (a primeira versão desta monografia
foi feita graças a sua colaboração), Matofu, João Gerônimo, pelo incentivo. Agradeço à prof.
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Irene Nakaoka, pelo est́ımulo e comentários. Aos acadêmicos da matemática, ciêncais da
computação, informática, que apontaram inúmeros erros nas versões prévias; e a Bruno
Koga, por apresentar alguns exemplos e observações.

2 Proposições

A clássica Lógica Proposicional estuda relações lógicas entre objetos chamados proposições,
os quais podem usualmente (nem sempre) ser interpretadas como sentenças da Ĺıngua Por-
tuguesa.

Por sua vez, sentenças podem ser de vários tipos: declarativas (afirmações), interroga-
tivas, modais (por exemplo, “parece que o carro do Zé é vermelho”), performáticas (ou de
comandos) (por exemplo, o termo “ go to” do Pascal.)

Vamos nos preocupar aqui apenas com as sentenças declarativas, simplesmente porque
estas são suficientes para o estudo da Matemática.

A prinćıpio, podemos ter a impressão de que toda sentença declarativa é falsa ou verda-
deira. Vamos analisar a frase seguinte:

“Esta sentença é falsa”.

Se ela é verdadeira, o conteúdo da frase se cumpre, ou seja, ela é falsa!. Resta o caso dela
ser falsa, assim o seu conteúdo “Esta sentença é falsa ” falha, ou seja, ela é verdadeira! Esta
“ingênua ” sentença é conhecido como o paradoxo de Eubulides de Mileto.

Para evitarmos situações deste tipo, vamos considerar apenas sentenças declarativas
“bem-comportadas”.

Definição 2.1. Proposição é uma sentença declarativa que é verdadeira ou falsa, mas não
ambas.

Uma proposição assume apenas um dos valores: verdadeira (V) ou falsa (F). Assim,
adotaremos dois prinćıpios :

Prinćıpio de não contradição: Uma proposição não pode ser verdadeira e falsa ao mesmo
tempo

Pŕıncipio do terceiro exclúıdo: Toda proposição é verdadeira ou falsa, não há terceira
possibilidade.

Exemplo 2.2. Vejamos alguns exemplos de proposições:

(a) A lua é feita de queijo.

(b) 4 é um número primo.

(c) 3+3 = 6.

(d) 4 é número positivo e 3 é par.
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(e) Choveu no Brasil em 12 de abril de 1523.

(f) 4 é número positivo ou 3 é par.

(g) A Terra gira em torno do Sol.

As afirmações (a), (b), (d) são proposições falsas, enquanto (c), (f), (g) são verdadeiras.
Embora (e) seja uma proposição, pois esta sentença é verdadeira ou não, não temos como
determinar seu valor-verdade.

Exemplo 2.3. As seguintes sentenças não são proposições: (a) x=3, (b) Você está bem ?,
(c) Vá embora !

O primeiro item representa uma sentença declarativa mas não uma proposição, pois seu
valor-verdade depende do valor atribúııdo a x (estudaremos tais sentenças no cálculo de
predicados). Os casos restantes nem são declarações.

Adotaremos letras maiúsculas para representação de proposições, em geral P , Q, R, S,...
Por exemplo, podemos denotar por P a proposição “4 é número positivo”, ou simplesmente,
P : “4 > 0” ou P := “4 > 0”. Caso não seja especificado, P representará uma proposição
qualquer.

3 Conectivos Lógicos

Proposições podem ser combinadas coerentemente através de conectivos lógicos, gerando
sentenças mais ricas. Alguns dos conectivos que estudaremos são: negação ∼, conjunção
lógica ∧, disjunção lógica ∨. Nas formas P ∧ Q, P ∨ Q, P,Q são chamados operandos e os
conectivos ∨,∧, são chamados operadores lógicos .

Operadores lógicos ou conectivos lógicos efetuam operações sobre as
proposições do mesmo modo que adição é um operação sobre os números, ou que a interseção
é operação sobre os conjuntos. Quando um operador lógico é usado para construir uma nova
proposição, seu valor-verdade depende da natureza dos operadores lógicos usados e do valor-
verdade das proposições originalmente dadas. Discutiremos agora como os operadores lógicos
afetam o valor-verdade das proposições. Veremos que os significados dos operadores lógicos
nem sempre coincidem com aqueles usados na nossa ĺıngua.

3.1 O operador negação: ∼

Denotando por P : “4 é positivo”, a proposição ∼ P pode ser interpretada por: “nao é o caso
de 4 ser positivo”, ou ainda, “não é verdade que 4 é positivo”, ou em linguaguem matemática,
“4 ≤ 0”. Sabemos que P é verdadeira e também que a sua negação, ∼ P , é falsa. Para o caso
geral, quando P representa uma proposição qualquer, o valor de ∼ P assume valor diferente
de P. Este fato pode ser representado através da seguinte tabela-verdade:

P ∼ P

V F

F V
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3.2 O operador conjunção: ∧

Representa intuitivamente o papel análogo ao conectivo “e” da Ĺıngua Portuguesa. O item
(d) do exemplo 2 pode ser representado por P ∧Q, onde P : “4 > 0′′ e Q : “3 é par”. Neste
caso, sabemos que P ∧ Q é falsa, pois falha a proposição Q. Em analogia ao conectivo “e”,
para o caso geral, P ∧ Q será verdadeiro desde que ambas as componentes P e Q sejam
verdadeiras. O valor-verdade de P ∧Q segue a tabela:

P Q P ∧Q

V V V

V F F

F V F

F F F

3.3 O operador disjunção: ∨

Funciona como o conectivo “ou”. Considerando as mesmas proposições acima, a proposição
P ∨ Q simboliza o item f do Exemplo 1, cujo valor-verdade é determinado pelo de P , pois
Q falha. No caso geral, para P ∨Q ser verdadeira basta que tenhamos pelo menos uma das
componentes válida. O valor-verdade de P ∨Q segue a tabela:

P Q P ∨Q

V V V

V F V

F V V

F F F

Observação 3.1. Em algumas situações cotidianas, o “ou” da Ĺıngua portuguesa funciona
com sentido de “ou exclusivo”, cujo significado difere do usado aqui. Um exemplo do “ou
exclusivo” segue. Num supermercado, a mãe diz: “Filho, escolha sorvete ou chocolate.” Esta
dif́ıcil decisão imposta ao garoto acontece (é verdadeira) desde que escolha uma e apenas uma
das opções. “ Zé é paulista ou paranaense” exemplifica outra situação do ou exclusivo.

Para o nosso propósito, P ∨Q é verdadeiro também quando ambas as proposições originais
o são

3.4 O operador condicional: →

Notação: P → Q (P : antecedente ou hipótese, Q: consequente ou conclusão).

Ilustremos inicialmente uma interpretação do conectivo → através da sentença

“Se Gustavo ganhar na próxima loteria, pagará churrasco.”

Definindo-se P : “Gustavo ganha na próxima loteria” e Q:“Gustavo paga churrasco”,
P → Q representa a promessa de Gustavo.
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Vamos analisar quando a promessa será cumprida. Primeiro caso : digamos que ele ganhe
(P é V). Pode acontecer de ele pagar o churrasco (Q é V), cumprindo a promessa (P → Q
é V). Por outro lado, Gustavo pode não pagá-lo, descumprindo a promessa (P → Q é F).
Segundo caso: digamos que Gustavo não ganhe (P é F). Neste caso, independente de pagar
ou não um churrasco, (Q é V ou F), a promessa não foi descumprida (P → Q é V). Observe
que a única possibilidade de P → Q ser falsa é quando P é V e Q é F . Nós esperamos
que tal operação funcione de maneira similar ao modelo acima, desta forma, quando P e Q
assumirem proposições arbitrárias, P → Q será regida pela tabela seguinte:

P Q P → Q

V V V

V F F

F V V

F F V

A proposição P → Q pode ser lida de vários modos: “se P , então Q”; “P é suficiente para Q”;
“Q é necessário para P”; “Q se P ”; “Q segue de P ”; “ Q desde que P ”; “Q é consequência
de P ”.

Na ĺıngua portuguesa, o uso do condicional estabece uma relação de causa e efeito, ou
relação de “herança” entre a hipótese e a conclusão. Assim, “se eu cair no lago, ficarei
molhado” relaciona uma causa a seu efeito. O condicional “se eu sou homem, então sou
mortal” caracteriza uma propriedade intŕınsica à raça humana.

Entretanto, no condicional lógica P → Q, a hipótese P não precisa estar relacionada à
conclusão Q. Isto pode causar alguma estranheza e confusão. Por exemplo, se P :=“laranjas
são pretas” e Q:=“a Terra é plana”, P → Q representa a sentença ”se laranjas são pretas,
então a Terra é plana”, que é destitúıdo de “sentido” na Ĺıngua Portuguesa. Como P é falso,
pela tabela verdade, P → Q é verdadeira, mesmo não existindo alguma relação de causa e
efeito entre as proposições envolvidas .

3.5 O operador bicondicional : ↔

É definido pela composição de operações: (P → Q) ∧ (Q→ P ). A sua tabela fica:

P Q P ↔ Q

V V V

V F F

F V F

F F V

Note que P ↔ Q vale quando P e Q possuem mesmo valor.

Algumas leituras mais usuais de P ↔ Q são: “P é causa e consequência de Q ”; “P é
condição necessária e sufiente para Q ”; “P se e somente se Q”.

Exemplo 3.2. Retornemos ao caso já visto: P :“Gustavo ganha na próxima loteria” e
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Q:“paga churrasco”. Colocamos abaixo algumas fórmulas com respectivo sentido:

P → Q: “Se Gustavo ganhar na próxima loteria, pagará um churrasco. ”
Q→ P : “Se Gustavo pagar churrasco, então ele ganhou na loteria. ”
P ↔ Q: “Gustavo pagará um churrasco se e apenas se ganhar na loteria.”

As três sentenças são todos distintas e para elucidar melhor as diferenças, vamos considerá-las
válidas, caso a caso. A primeira sentença, a promessa, inclui a possibilidade dele não ganhar
na loteria, mas pagar o churrasco com outro recurso. No entanto, a segunda sentença, Q→ P ,
não permite tal possibilidade. Ela continua válida se ele não pagar churrasco e ganhar na
loteria. Mas a terceira não permite tal possibilidade.

Exemplo 3.3. Outra ilustração de P ↔ Q: considere T um triângulo fixado de lados
a > b ≥ c e defina P :“T é triângulo retângulo” e Q: “a2 = b2 + c2 ”. O clássico Teorema de
Pitágoras com sua rećıproca afirma que “T é triângulo retângulo se e somente se a2 = b2+c2”,
ou ainda, P ↔ Q acontece.

4 Tabelas-verdade

Um fato de importância fundamental: o valor-verdade de proposições compostas obtidas
via combinação de conectivos fica completamente determinado pelos valores das proposiçoẽs
componentes e pela natureza dos conectivos envolvidos.

Exemplo 4.1. Vamos construir a tabela verdade da fórmula (P∨ ∼ Q) → Q.Iniciamos
exibindo as colunas de P e Q. Observe que há quatro linhas de valores, pois há 4 possibilidades
de combinar os valores de P e Q. Na segunda etapa, constrúımos a coluna relativa a ∼ Q. Em
seguida, a etapa 3 combina os valores das colunas de P e da coluna ∼ Q usando o conectivo
∨. Finalmente, a última coluna constrúıda será combinada com a coluna Q via análise do
condicional. A tabela abaixo esquematiza os nossos racioćınios:

P Q ∼ Q P∨ ∼ Q (P∨ ∼ Q)→ Q

V V F V V

V F V V F

F V F F V

F F V V F

1 1 2 3 4

onde a última linha denota as estapas da construção. Em particular, quando P e Q são
verdadeiras, então a fórmula acima é V (primeira linha); e quando P é V e Q é F, então a
proposição é F; e assim em diante.

Exemplo 4.2. Vamos determinar a tabela-verdade de S := (P ∧Q)∨ ∼ (P → Q). Na forma
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de tabela
P Q (P → Q) ∼ (P → Q) P ∧Q S

V V V F V V

V F F V F V

F V V F F F

F F V F F F

1 1 2 3 3 4

Os valores-verdade da coluna S na etapa 5 é determinado segundo as colunas de ∼(P→ Q)
e de (P∧Q) através da análise da tabela do ∨.

Exemplo 4.3. A tabela-verdade da proposição R = (P ∧Q) ∨ (∼ (P ∨Q))

P Q P∧Q ∼ (P ∨Q) R

V V V F V

V F F F F

F V F F F

F F F V V

1 1 2 3 4

Observação 4.4. Cada proposição simples (âtomica) está sempre associado a dois valores
auto-excludentes: verdadeiro ou falso. Um argumento combinatório mostra que a tabela
verdade de uma fórmula composta por n proposições originais (atômicas) possui 2n linhas.
Um proposição gerada por 10 proposições atômicas necessita de 210 linhas na composição
de sua tabela verdade. Não é dif́ıcil exibir um método para simular computacionalmente a
construção de tabelas-verdade. Como o número de linhas crece muito rápido, infelizmente
nem sempre é viável fazer a tabela verdade de um proposição, mesmo com a ajuda de um
computador.

Para termos uma ideia intuitiva do que estamos dizendo, imaginemos um algoritmo para
executar a tabela-verdade de uma proposição qualquer. Suponha que um computador seja
capaz de verificar 1 trilhão de linhas por segundo. Se a entrada é uma proposição formada por
100 proprosições atômicas, o computador demoraria aproximadamente 1, 27.1030 segundos,
ou seja, mais de 40 bilhões de anos!

Notação: Faremos uso de sinais: ( ); [ ],{ } para evitar ambiguidades, como por exemplo
em P ∧ Q ∨ R, que pode gerar confusão, pois há duas distintas interpretações, a saber:
(P ∧ Q) ∨ R ou ainda P ∧ (Q ∨ R). Faça as respectivas tabelas-verdade para verificar a
diferença.

Para evitar o uso excessivo de sinais, estabelecemos uma convenção de prioridade na
aplicação dos conectivos. Adotamos os conectivos ∼, ∧, ∨, → e ↔ em ordem decrescente de
prioridade. Em outra palavras, o conectivo ∼ tem prioridade em relação aos outros, e ele age
na proposição à direita mais próxima. Também por convenção, os conectivos ∧ e ∨ possuem
a mesma ordem de prioridade. Por exemplo, P ∨Q→ R será entendido como (P ∨Q)→ R,
enquanto que ∼ P ∧Q representa (∼ P) ∧Q.
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5 Tautologias

Lembrando a promessa de Gustavo, P → Q, ela assume valor V e F dependendo dos valores
tomados em P e em Q. Mas vejamos um caso curioso:

Exemplo 5.1. Analisemos a proposição [P ∧ (P → Q)]→ Q.

Primeiro método: Análogo ao caso anterior, via construção da tabela:

P Q (P →Q) P∧(P →Q) [ P∧(P →Q) ] → Q.

F F V F V

F V V F V

V F F F V

V V V V V

1 1 2 3 4

Segundo método: Para evitarmos a elaboração da tabela acima, vamos proceder de forma
indireta. Conside, a prinćıpio , onde a nossa proposição poderia receber valor F. Analisando a
tabela do condicional, o único caso seria quando: P∧(P → Q) for V e Q for F. Analogamente,
para P ∧ (P → Q) ser V, teŕıamos obrigatoriamente que P é V e P → Q é V. Mas para
P → Q se cumprir, teŕıamos:

• ou P é F (contrariando resultado prévio na linha acima).

• ou P é V e Q é V (novamente contrariando resultado prévio).

Ou seja, não há possibilidade alguma da proposição ser falsa.

Em contraste com a promessa de Gustavo, a proposição acima sempre é verdadeira (ver
a coluna do passo 4), independente dos valores de P e Q. Isto motiva a definição:

Definição 5.2. Uma tautologia é uma proposição que assume sempre valor verdade V, inde-
pendente dos valores verdade das proposições que a compõe. Por outro lado, uma contradição
é uma proposição sempre falsa.

Um economista que disser “a inflação sobe ou não sobe”(P∨ ∼ P ) corre o risco de ser
acusado de incompetente, mas não de mentiroso. Independente do significado atribúıdo a P ,
P∨ ∼ P sempre é tautologia, enquanto que P∧ ∼ P ilustra uma contradição.

É através das tautologias que podemos simplificar expressões lógicas e criar regras de
inferências ( veremos mais tarde este conceito).

Observe que se C é contradição então ∼ C é tautologia. Além disto, se T representa uma
tautologia, então ∼ T denota uma contradição.

5.1 Equivalências

Em computação, dois programas distintos podem executar a mesma tarefa, ambos utilizando
tempos próximos na execução e mesmo gasto de memória. Neste caso, é natural dizer que eles
são programas equivalentes. A expressão algébrica (x− 1).(x+ 1) equivale a x2− 1. Embora
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ambas sejam idênticas numericamente, há uma diferença do ponto de vista computacional,
pois a primeira expressão exige 3 operações, enquanto que a segunda, apenas duas.

Assim como na álgebra, seria de grande interesse se pudéssemos simplificar expressões
lógicas. Para atingir tal objetivo, definimos o conceito de equivalência lógica.

Definição 5.3. Duas proposições P e Q são equivalentes (notação: P ≡ Q ou P⇔ Q) se P
é V quando e apenas quando Q é V. Em outras palavras, P ≡ Q se e somente se P↔Q for
tautologia. Neste caso, dizemos P e Q formam uma identidade lógica.

Por exemplo, ∼ (∼ P ) e P são claramente equivalentes. As fórmulas ∼ (P ∨ Q) e
(∼ P ) ∧ (∼ Q) ilustram outro exemplo importante de identidade lógica.

Exemplo 5.4. P → Q ≡ (∼ P ∨Q). De fato,

P Q P → Q) ∼ P ∨Q (P →Q) ↔∼ P ∨Q.

F F V V V

F V V V V

V F F F V

V V V V V

1 1 2 2 3

Repare que as colunas 2 coincidem em todas as linhas. Como comentamos, P → Q ≡∼ P ∨Q,
pois (P → Q)↔∼ P ∨Q é uma tautologia (ver coluna da etapa 3).

Verifique as seguintes identidades lógicas abaixo.

Lista 1 - identidades lógicas

identidade nome sigla

1 P ≡ (P ∨ P ) idempotência de ∨ IDN
2 P ≡ (P ∧ P ) idempontência de ∧ IDN
3 (P ∨Q) ≡ (Q ∨ P ) comutatividade de ∨ COM
4 (P ∧Q) ≡ (Q ∧ P ) comutatividade de ∧ COM
5 [(P ∨Q) ∨R] ≡ [P ∨ (Q ∨R)] associatividade de ∨ ASS
6 [(P ∧Q) ∧R] ≡ (P ∧ (Q ∧R)] associatividade de ∧ ASS
7 ∼ (P ∧Q) ≡ (∼ P∨ ∼ Q) lei de De Morgan DM
8 ∼ (P ∨Q) ≡ (∼ P∧ ∼ Q) lei de De Morgan DM
9 [P ∧ (Q ∨R)] ≡ [(P ∧Q) ∨ (P ∧R)] distributiva de ∧ sobre ∨ DIST
10 [P ∨ (Q ∧R)] ≡ [(P ∨Q) ∧ (P ∨R)] distributiva de ∨ sobre ∧ DIST
11 P ≡∼ (∼ P ) dupla negação DN
12 (P → Q) ≡ (∼ P ∨Q) definição de condicional DC
13 (P ↔ Q) ≡ (P → Q) ∧ (Q→ P ) definição de quivalência DE
14 [(P ∧Q)→ R] ≡ [P → (Q→ R) exportação EX
15 [(P → Q) ∧ (P →∼ Q)] ≡∼ P absurdo ABS
16 (P → Q) ≡ (∼ Q→∼ P ) contrapositiva CP
17 P → Q ≡ (P ∧ ∼ Q)→ C C: contradição redução ao absurdo R
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Observação 5.5. Note que ≡ é uma relação de equivalência, ou seja, é reflexiva, simétrica
e transitiva.

Observação 5.6. A operacão bicondicional foi definida através dos conectivos → e ∧. Por
sua vez, o condicional (regra 12 acima, Exemplo 5.4) pode ser definida via ∼ e ∨. Pela lei de
De Morgan (ver 7, lista acima), ∼ (P ∧Q) ≡ (∼ P∨ ∼ Q). Ora, como elas são equivalentes,
suas respectivas negações também o são: ∼ (∼ (P ∧ Q)) ≡∼ (∼ P∨ ∼ Q). Por outro lado,
(regra 11- lista 1), a primeira proposição é equivalente a P∧Q. Por último, pela transitividade
de ≡, P ∧Q≡∼(∼ P∨ ∼ Q) Assim, obtemos ∧ a partir de ∨ e ∼. Logo, estas duas últimas
operações são suficientes para constrúırmos todos os conectivos vistos.

Exemplo 5.7. O seguinte anúncio educativo tem aparecido em rede nacional. “O Ministério
da Saúde adverte:

F1 := Se beber, não dirija.
F2 := Se dirigir, não beba.”

O telespectador pode ter a impressão de que recebeu dois conselhos distintos, já que são frases
distintas. Do ponto de vista lógico, há apenas uma duplicação do mesmo conselho. De fato,
intuitivamnte as “proposições” P :=“beber” e Q :=“dirigir” simulam as frases da seguinte
forma: F1 ≡ P →∼ Q e F2 ≡ Q→∼ P. Mas tais frases são equivalentes, pela contrapositiva
e dupla negação.

As identidades são usadas para simplificar uma proposição dada. Por exemplo, vamos
determinar uma fórmula equivalente a U = (P ∧ Q) → (∼ P ∨ Q) sem usar o conectivo
∧. Temos que: P ∧ Q≡∼(∼ P∨ ∼ Q) e também que ∼ P ∧ Q≡∼(∼∼P∨ ∼ Q) (feitos na
obs. anterior). Substituindo ambas as formas acima em U , obtemos: U≡∼(∼ P∨ ∼ Q)→∼
(∼∼P∨ ∼ Q), e usando regras 3 e 12, U≡∼(P → Q)→∼ (Q→ P ).

5.2 Implicações

Tautologias envolvendo o operador → são tão importantes que recebem um nome especial.

Definição 5.8. Dadas duas proposições quaisquer P e Q, dizemos que “P implica Q”, de-
notado por P ⇒ Q, quando o condicional P → Q for uma tautologia.

Elencamos uma pequena lista de tautologias envolvendo condicionais (implicações) e res-
pectivos nomes.

Lista 2: implicações

implicação nome sigla

1 P ⇒ (P ∨Q) adição AD
2 (P ∧Q)⇒ P simplificação SIM
3 [P ∧ (P → Q)]⇒ Q modus ponens MP
4 [(P → Q)∧ ∼ Q]⇒∼ P modus tollens MT
5 [∼ P ∧ (P ∨Q)]⇒ Q silogismo disjuntivo SD
6 [(P → Q) ∧ (Q→ R)]⇒ (P → R) silogismo hipotético SH
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Verificar as tautologias acima.

6 Inferência

Em nosso cotidiano estamos acostumados a tirar certas conclusões, partindo de informações
fornecidas. Vejamos duas situações

Situação 1: Quando alguém diz:

“Gustavo ficou molhado porque caiu no lago”,

inferimos mentalmente que essa pessoa nos prestou uma informação que se traduziria de
modo mais completo nesta forma:

Se Gustavo cair no lago, ficará molhado.
Gustavo caiu no lago.

Gustavo ficou molhado.

Admitimos que as duas informações escritas sobre o traço horizontal são verdadeiras: a
primeira, porque a ela nos habituamos através de experiências e constatações (quem cai num
lago costuma ficar molhado - em condições “normais”) a segunda porque a informação nos
foi explicitamente fornecida (o fenõmeno cair no lago aconteceu). Nossa conclusão é leǵıtima
- a conclusão é verdadeira e não pode deixar de ser verdadeira.

Vejamos de que maneira o racioćınio se apresenta, usando enunciados simbólicos:

P→ Q
P
Q

onde as proposições P=“Gustavo cai no lago”e Q =“Gustavo fica molhado. ”Como P e
Q→ Q são verdadeiros, e lembrando que P∧(P→ Q)⇒ Q é uma tautologia, obtemos que a
nossa conclusão: Q é verdadeira, Nosso racioćınio foi leǵıtimo, não passamos de informações
verdadeiras para conclusões que poderiam, eventualmente, mostrar-se falsas.

Situação 2: Vamos alterar os significados (semântica) das proposições acima. Retor-
namos à situçao apresentada na definição do condicional, assumimos agora a validade da
promessa P → Q de Gustavo (vamos por um momento considerá-la verdadeira - ele sempre
cumpre as promessas). Até aqui não podemos concluir nada. No entanto, se ele ganhar na lo-
teria (P se cumpre), então agora sim podemos concluir que o churrasco será realizado (Q é V).

Ambas as situações são representadas pelo mesmo esquema acima. É plauśıvel então
admitirmos que o argumento

P → Q e P então Q
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sempre se verifica, independente dos significados atribúıdos às proposições.

A dedução pretende assegurar-nos a verdade da conclusão, quando partimos de infor-
macões verdadeiras. Ela nos dá garantias de que a verdade foi preservada.

De um modo geral, aquilo que nos baseamos em racioćınios e inferências e assumidos
verdadeiros são as premissas, o ponto a que chegamos é a conclusão. A coleção de sentenças
que “traduzem” o pensamento é o argumento.

Adotaremos uma forma padronizada para escrever os argumentos , colocando as premissas
A1, A2, . . . , An (proposições que já sabemos ser verdadeiras, ou nos foi dado, ou simplesmente
assumidas verdadeiras) sobre um traço horizontal e, em seguida, a conclusão An+1. Assim,
denotaremos o argumento por

A1

A2
...
An

An+1,

(6.1)

ou ainda na forma concisa
A1;A2, . . . , An ` An+1

Dado o argumento acima, vamos associá-la ao condicional:

A1 ∧A2 ∧ . . . ∧An → An+1

conforme resultado abaixo.

Teorema 6.1. O argumento acima é leǵıtimo se e somente se o condicional associado

(A1 ∧A2 ∧ . . . ∧An)→ An+1

é tautológico.

Demonstração: Se o argumento é leǵıtimo(sempre obtemos verdades), então impede que
as premissas sejam V e a conclusão F de modo que o condicional associado sempre assume
valor V, gerando uma tautologia. Reciprocamente, sendo o condicional acima tautológico, é
facil verificar que o argumento é leǵıtimo. ut

Uma lista de argumentos leǵıtimos, que nos ajudam a obter conclusões, já foi elencada na
lista de tautologias, que passamos a chamá-las regras de inferência (ver Lista 2). Destacamos
abaixo alguns delas.
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Lista 3 - Principais Regras de inferências:

P
(P ∨Q) adição - AD

P ∧Q

Q simplificação - SIM

P → Q
P
Q

modus ponens - MP

P → Q
∼ Q

∼ P
modus tollens - MT

P ∨Q)
∼ P
Q

silogismo disjuntivo - SD

P → Q
Q → R

P → R

silogismo hipotético - SH

Exemplo 6.2. Verifique o argumento: “Se 4 não é par, então 5 não é primo.” “O número 5
é primo”. Logo, “4 é par”.

Chamando, P :=“4 é par” e Q := “5 é primo”. O argumento equivale ao formato

1. ∼ P → ∼ Q
2. Q

P

Um aplicação da regra Modus Tollens (MT) justifica a conclusão.

Exemplo 6.3. Condire as premissas: “Se o dia estiver quente, irei nadar ”. “Se eu for
nadar, não estudarei ” Logo, podemos concluir que :“Se o dia estiver quente, não estudarei.”
Aqui usamos a regra 6 (silogismo hipoético), onde P,Q e R denotam respectivamente as
sentenças:“ o dia está quente ”; “eu vou nadar ”, “ não vou estudar ”. Note que a conclusão
P → R é uma sentença condicional. Se incluirmos a premissa P, através de MP obtemos a
conclusão R. Todo o argumento pode ser esquematizado abaixo:

1 P → Q premissa 1
2 Q→ R premissa 2
3 P premissa 3(adiciona na segunda parte)
4 P → R primeira conclusão (linhas 1, 2, SH)
5 R conclusão da segunda parte (linhas 3, 4, MP)

Observe que a primeira conclusão (linha 4) foi usada como premissa, pois já faz parte do
nosso repertório de informações válidas.

Observação 6.4. Note que o significado atribúıdo a cada proposição é irrelevante para a
conclusão. Em outras palavras, sempre que tivermos as 3 premissas anteriores, poderemos
concluir a validades de R.

Ilustremos uma aplicação do cálculo proposicional.
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Exemplo 6.5. Imagine Flávio, um qúımico, na seguinte experiência e constatou os fatos:

- Flávio notou que o papel de tornasol ficou vermelho ao ser posto em ácido.

- Verificou que ficou azul ao ser posto em solução alcalina.

- Agora, Flávio está colocando o papel em solução alcalina ou ácida.

- Ele observou que o papel naõ ficou azul.

- Concluiu que o papel ficou vermelho.

O argumento pode ser colocado na forma:

A→ V ;B → Z;A ∨B;∼ Z ` V

onde : A: ácido, B: base, V: vermelho, Z: azul. As premissas são verdadeiras, pois são fatos
da experiência. Podemos enumerá-las

1. A→ V Premissa
2. B → Z Premissa
3. A ∨B Premissa
4. ∼ Z . Premissa

Aplicamos Modus Tollens ( MT) nas linhas 2. e 3. e obtemos a conclusão exibida na linha 5.

5 ∼ B (3, 2,MT.)

deixando expĺıcito entre parênteses as premissas (linha 2 e 3) usadas e a regra de inferência
em questão (no caso, MT.). Portanto a conclusão da linha 5 é verdadeira e podemos usá-la
agora como uma nova premissa. Agora, usando silogismo disjuntivo ( SD) nas linhas 4 e 5,
obtemos a conclusão:

6 A (4, 5, SD.)

Finalmente, usando Modus Ponens nas linhas 1 e 6, chegamos à conclusão desejada:

7 V (1, 6,MP.)

ou seja, realmente está certa a conjectura de Flávio.

Exemplo 6.6. Vamos analisar o argumento:“ Se estudo ou se eu sou um gênio, então eu
passarei nesta disciplina. Se eu passar nesta disciplina, então estarei automaticamente inscrito
na próxima disciplina. Portanto, se eu não estiver inscrito na próxima disciplina, eu não sou
um gênio.”

Tomando-se: S: “ eu estudo ” ; G: “ eu sou gênio ” ; P: “ eu passarei no curso ”; A: “ eu
estarei inscrito no próximo curso ”, o argumento fica:

(S ∨G)→ P ;P → A `∼ A→∼ G

Vamos verificar o argumento, como no exemplo anterior.

1. (S ∨G)→ P Premissa
2. P → A Premissa
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Inicialmente incluiremos uma premissa (linha 3) que já faz parte do nosso conhecimento, e o
argumento segue:

3. G→ (G ∨ S) adição ( regra)
4. G→ (S ∨G) 3. comutatividade
5. G→ P 4, 1 silogismo hipotético
6. G→ A 5, 2 silogismo hipotético
7. ∼ A→∼ G 6 contra-positiva

portanto, o argumento é leǵıtimo.

Como ilustrado nos exemplos acima, cabe ressaltar que inferências conseguem modelar
muitas decisões tomadas em nosso cotidiano.

Por que seguir este procediemnto “complicado”? O Teorema 6.1 afirma que basta fa-
zer uma tabela-verdade para verificar ou não se um argumento é leǵıtimo. Infelizmente a
verificação por tabela verdade é um processo computacional inviável, de acordo com a Ob-
servação 4.4. Na prática, a validade de um argumento é verificado conforme método acima
através de um pequena lista de identidades lógicas e uma pequena lista de implicações.

Definição 6.7. Falácias ou sofismas são argumentos que resultam de inferências incorretas.

Exemplo 6.8. Considere o racioćınio:

“Se o réu é culpado, ele ficará nervoso quando interrogado
O réu estava muito nervoso quando foi interrogado
Portanto, o réu é culpado.”

cuja representaçã na forma lógica é

P → Q;Q ` P

Tal argumento não é correto porque a conclusão P pode ser falsa, embora P → Q e Q sejam
válidos, basta verificar que condicional associado [(P → Q) ∧ Q] → P não é tautologia,
caracterizando uma falácia.

Exemplo 6.9. Vejamos outro exemplo de sofisma:

“Se o réu tinha as mãos cobertas de sangue, então ele é o assassino
As maãos do réu estavam limpas.
Portanto, o réu é inocente.”

Este argumento ignora a esperteza do criminoso, que lava as mãos imediatamente após
cometer um crime.
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7 Métodos de inferência

Estamos interessados em apresentar as principais técnicas de inferência nesta seção. Consi-
deremos o argumento

A1, A2, . . . , An ` An+1 (7.1)

formado por n hipóteses e a tese An+1. Os métodos mais usadas para legitimar tal argumento
são descritos abaixo.

7.1 Demonstração direta

A demonstração direta consiste em uma sequência que combina inferências (baseadas nas
regras de inferência), e possivelmente equivalências lógicas sobre as hipóteses A1, A2, . . . , An

até chegar na tese An+1.

Todas as inferências vistas na Seção 6 utilizam o método direto.

7.2 Demonstração condicional ou direta-condicional

Apesar da versatilidade do método direto, nem sempre é fácil inferir a tese. Aqui o método
pode facilitar a prova quando a tese é um condicional, digamos An+1 = P → Q. O argumento
fica

A1, A2, . . . , An ` P → Q (7.2)

O método condicional consiste em adicionar a proposição P como hipótese, e simplesmente
provar Q. Esquematicamente, provamos o argumento

A1, A2, . . . , An, P ` Q. (7.3)

A explicação segue. O argumento em (7.2) é leǵıtimo se, e somente se, o “condicional
associado”

(A1 ∧A2 ∧ . . . ∧An)→ (P → Q)

é tautológico, pelo Teorema 6.1. Novamente pelo Teorema 6.1, o “condicional associado” ao
argumento (7.3) é

(A1 ∧A2 ∧ . . . ∧An ∧ P )→ Q

Queremos provar a equivalência destes condicionais. Se a proposição P é F, então automati-
camente os dois condicionais associados são V. O caso crucial vem agora: se a proposição P
é V (neste caso, P pode ser considerada um hipótese - a hipótese adicionada em (7.3)). Uma
simples análise mostra que P → Q será V se, e somente se, a proposição Q for V (a nova tese
no argumento (7.3)). Os condicionais associados são equivalentes, donde o argumento (7.2)
é leǵıtimo se, e somente se, o argumento (7.3) é leǵıtimo.

Exemplo 7.1. Demonstrar a validade do argumento

(P ∨Q) ∧R

(∼ P )→ Q
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Pelo método condicional, o argumento transforma-se em

1. (P ∨Q) ∧R
2. ∼ P

Q

cuja prova segue
3. P ∨Q (1, SIM)
4. Q (2,3, MP)

7.3 Demonstração pela contrapositiva

Este método também pode ser aplicado quando a tese é um condicional, digamos An+1 =
P → Q. O argumento fica

A1, A2, . . . , An ` P → Q (7.4)

O método por contrapositiva consiste em adicionar a proposição ∼ Q como hipótese, e
simplesmente provar ∼ P . Em outras palavras, provamos o argumento

A1, A2, . . . , An,∼ Q `∼ P. (7.5)

A explicação segue. A proposição P → Q é V se e somente se ∼ Q→∼ P é V, pela regra
contrapositiva (dáı o nome). Aplicamos agora o método condicional sobre a tese ∼ Q→∼ P
para obtermos o argumento (7.5).

Exemplo 7.2. Retornemos ao argumento apresentado no Exemplo 7.1. A inferência por
contrapositica corresponde a:

1. (P ∨Q) ∧R
2. ∼ Q

∼∼ P.

Uma inferência viável é
3. P ∨Q (1, SIM)
4. P (2,3, SD).

7.4 Demonstração por contradição ou indireta

O método por contradição ou indireto consiste em assumir que a tese é falsa (adicionando a
hipótese ∼ An+1) e obter como conclusão uma contradição C, geralmente do tipo P∧ ∼ P .
Esquematicamente, provamos

A1, A2, . . . , An,∼ An+1 ` C. (7.6)

Vamos tentar justificar. Pelo Teorema 6.1, o “condicional associado” ao argumento é

(A1 ∧A2 ∧ . . . ∧An)→ An+1
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O ponto principal da justificativa: An+1 ≡∼ (An+1) → C, onde C denota uma contradição.
Com a substituição acima, a tese passa a ser um condicional. Aplicando o método condicional
sobre esta nova tese ∼ (An+1)→ C, o argumento equivalente fica

(A1 ∧A2 ∧ . . . ∧An∧ ∼ An+1)→ C

Exemplo 7.3. Ilustramos como fica a prova por contradição do Exemplo 7.1. Basta legitimar

1 (P ∨Q) ∧R
2 ∼ (∼ P → Q)

C

Uma inferência do argumeto acima é

3. P ∨Q (1, SIM)
4. ∼ (P ∨Q) (2, DC)
5. C (3,4 )
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